已知函数f(x)=4^x+4^(-x)是偶函数,证明,对任意实数x1和x2,都有1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 15:23:50
已知函数f(x)=4^x+4^(-x)是偶函数,证明,对任意实数x1和x2,都有1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]
x){}K}6uCFI\In6nHXlF;y@ çz*t^6}6P(h64Ҍ}Թ4-rbmj~ }1YmA@ !Ł#( RUԆh(Tx>eӹO<|m=`@ǘ!!ZUU@ <;P oE

已知函数f(x)=4^x+4^(-x)是偶函数,证明,对任意实数x1和x2,都有1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]
已知函数f(x)=4^x+4^(-x)是偶函数,证明,对任意实数x1和x2,都有1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]

已知函数f(x)=4^x+4^(-x)是偶函数,证明,对任意实数x1和x2,都有1/2[f(x1)+f(x2)]≥f[(x1+x2)/2]
证明:1/2[f(x1)+f(x2)]=1/2[4^x1+4^(-x1)+4^x2+4^(-x2)]
=1/2(4^x1+4^x2)+1/2[4^(-x1)+4^(-x2)] 由均值不等式
≥4^[(x1+x2)/2]+4^[-(x1+x2)/2] = f[(x1+x2)/2]