已知二次函数f(x)=ax^2+bx+a的对称轴为x=7/4,且方程f(x)-7x-a=0有两个相等的实数是否存在实数m(m>0),使f(x)的定义域为[m,3],值域为[1,3m]?
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:21:57
xՒn@_GjJM` }-(MA!&MUZVmoC;xfF$8po֮U6g+^{l ̒l:_-ߪ&.]wTK_$鎮%n@"ܛ#l`.apgZv^)9jA@%8~
:XuxQ/L;zi^=aϤZiQS3t;EGIApkXt?ȺV+[
N1f%BW
?ž)n5mԫ5h.{֯y
~G.!
wsNUk3!s*EQS4NXϳ
ϏU/#yoRZPY'`F
wt`ZnHcI>j{G+
已知二次函数f(x)=ax^2+bx+a的对称轴为x=7/4,且方程f(x)-7x-a=0有两个相等的实数是否存在实数m(m>0),使f(x)的定义域为[m,3],值域为[1,3m]?
已知二次函数f(x)=ax^2+bx+a的对称轴为x=7/4,且方程f(x)-7x-a=0有两个相等的实数
是否存在实数m(m>0),使f(x)的定义域为[m,3],值域为[1,3m]?
已知二次函数f(x)=ax^2+bx+a的对称轴为x=7/4,且方程f(x)-7x-a=0有两个相等的实数是否存在实数m(m>0),使f(x)的定义域为[m,3],值域为[1,3m]?
因为二次函数f(x)=ax^2+bx+a的对称轴为x=7/4 所以-b/2a=7/4 又方程f(x)=7x+a有两个相等的实数根 所以方程f(x)=7x+a的判别式Δ=(b-7)^2-4a*0=0 故b=7 所以a=-2 所以f(x)=-2x^2+7x-2 (2)f(x)在[1,3]上的最大值是f(7/4)=-2*(7/4)^2+7*(7/4)-2=33/8 f(x)在[1,3]上的最小值是f(3)=-2*3^2+7*3-2=1 所以f(x)在[1,3]上的值域是[1,33/8] (3)由(2)知f(3)=1 若M=7/4,则3/M=12/7≠33/8,所以不符合 那么M>7/4 则f(M)=-2M^2+7M-2=3/M 所以2M^3-7M^2+2M+3=0 解得唯有M=3符合,其余解不符合 所以M=3
二次函数f(x)=ax^2+bx+c(a
二次函数f(x)=ax^2+bx+c(a
已知二次函数f(x)=ax^2+bx+c 讨论函数f(x)的奇偶性
已知二次函数f(x)=ax²+bx+c
二次函数证明题,急已知f(x)=ax^2+bx+c(a不等于0),已知当|x|
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2-bx+1,(1)若f(x)
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
二次函数f(x)=ax平方+bx+c(a
已知:二次函数f(x)=ax^2+bx+c(a>0),若f(c)=0,且00
已知二次函数f(x)=ax^2+bx+c和函数g(x)=-bx,其中a,b,c满足a>0,c
已知二次函数f(x)=ax^2+bx+c 满足√2a+c/√2>b ,且c
增函数 证明二次函数f(x)=ax^2+bx+c (a
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
已知二次函数f(x)=ax^2+bx+1.已知函数f(x)=ax^2+bx+1(a>0,b∈R)、设方程f(x)=x有两个实数根x1,x21、 如果x1
二次函数的性质及二次方程根的分布已知二次函数f(x)=ax^2+bx-2(a不等于零).当a
对一切实数x ,若二次函数f(x)=ax^2+bx+c(a
已知二次函数F(X)=ax^2+bx+4,集合A={x|f(x)=x}若1属于A,且1