已知如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合,已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合.当

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 16:48:21
已知如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合,已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合.当
xSNQB[9s!-9sU֘`*PQ"B,*^bzsӧ4$/Y{uY+ ;}O}dcNQH ֞,W esn{^dO:m+lnuǝz[(^O~xMZvmC{ ^`yy^3OZo usLĦ&G8 ?Tyt$9GTbT4S_1_OQO1ǩ16" 4Ƅ%dlr:! IFbMek 1bQYVd^9Qi^M$116 { b Zs-da4i 뢬Cju]؍&Ɩ[;i$}FYL'SzHr̭:4k tYh$GNj$x[8|fpD?68d xAC p':<<^(ƒCz+C#zK]]HdN/vVkk.^ZOJ :

已知如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合,已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合.当
已知如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合,

已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合.当∠A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点

已知如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合,已知:如图,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形使C点与AB边上的一点D重合.当

看1就可以了

楼主你好!很高兴为你
条件为:当角A=30°时,点D恰为AB的中点。
证明:因为角A=30°
所以AB=2BC
而由折叠知:BC=BD
所以:AB=2BD
即:D是AB的中点。
不清楚的话欢迎追问交流,希望能帮到楼主~

已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知在Rt△ABC,∠C=90°,AC=30cm,BC=40cm.(1)如图(1),四边形EFGH是Rt△ABC的内接正方形(1)如图(1),四边形EFGH是Rt△ABC的内接正方形,求内接正方形的边长;如图(2),若在Rt△ABC中并排放置两个三角形, 已知:如图 ,在RT△ABC中,∠C=90°,∠BAC=30°.求证:BC=1/2AB 如图,已知在Rt△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长. 已知如图,在Rt△ABC中.∠C=90°,AD平分∠BAC,CD=1.5,BD=2.5,求AC的长 如图,已知在等腰Rt△ABC中,∠C=90°,AE平分∠CAB,BF⊥AE,求证:AE=2BF 如图 已知在RT△ABC中 ∠C=90° AB=6 AC=4 求直角三角形内切园半径 已知:如图,在Rt△ABC中,∠C=90°,D是AC的中点.求证:AB²+3BC²=4BD² 如图,已知在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:CD²=AD*DB 如图,已知在Rt△ABC中,∠C=90°,CD是斜边AB上的高.求证:CD²=AD*DB 如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面 如图,在四边形BCDE中,∠C=∠BED=90°,∠B=60°,延长CD,BE,得到Rt△ABC,已知CD=2,DE=1,求Rt△ABC的面积 如图,在Rt△ABC中,∠C等于90°,图中有三个正方形,证明a=b+c? 如图,在Rt△ABC中,角C=90° 如图,在Rt△ABC和Rt△A'B'C'已知∠C=∠C'=90°AB=A'B',AC=A'C'说明△ABC=△A'B'C' 如图,在Rt△ABC中,∠C=90°,sinA=0.7,求cosA、 tanA的值. 如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值