若tanα=3,求sin^2α-sinαcosα+2cos^2α的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:14:44
若tanα=3,求sin^2α-sinαcosα+2cos^2α的值
xQN@!-#/H (RF.*QhHLi4Zh?W/8Kƒ1їs朙KYE[2)Gml뜀a *L!Np3)JFV ɂ ,Orql~+QN+j4I\~GCwteI|")b6ZH .в3yXK&I;8C[[kRy65.絥@3[[d/w[#WtQGܿB

若tanα=3,求sin^2α-sinαcosα+2cos^2α的值
若tanα=3,求sin^2α-sinαcosα+2cos^2α的值

若tanα=3,求sin^2α-sinαcosα+2cos^2α的值
原式=[sinacosa+2(cosa)^2-2(sina)^2]/[(sina)^2+(cosa)^2]
分式上下同除(cosa)^2,
则原式=[tana+2-2(tana)^2]/[(tana)^2+1]=-13/10

cos^2a=1/10
sin^2α-sinαcosα+2cos^2α
=(tan^2-tana+2)/cos^2a
=80

思路:画个直角三角形,其中α为较大的锐角,那么较长的直角边比上较短的直角边=3,画出图可易知sinα和cosα的值,代入计算即可,结果是4/5