sin(2x+y)=3siny,x≠kπ+π/2,x+y≠kπ+π/2(k∈Z)求证:tan(x+y)=2tanx
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 18:13:08
xRN0~]nxx+cDwhdAP16
;+_Zxe4s6׳j;K͍[IT7FܽQg38Yg& WX-ˤ\)2jg
8/sW"q[|lw*BלU)$n
6x;T9,.GFm;6MVYE!b@Y6uТwϠq%Xt1K9@~XT8T`B
t1pLS8C;|^&A*S='
sin(2x+y)=3siny,x≠kπ+π/2,x+y≠kπ+π/2(k∈Z)求证:tan(x+y)=2tanx
sin(2x+y)=3siny,x≠kπ+π/2,x+y≠kπ+π/2(k∈Z)求证:tan(x+y)=2tanx
sin(2x+y)=3siny,x≠kπ+π/2,x+y≠kπ+π/2(k∈Z)求证:tan(x+y)=2tanx
观察 结论tan(x+y)=2tanx 和条件sin(2x+y)=3siny中
角度的关系,可知
2x+y=(x+y)+(x)
y=(x+y)-(x)
这样可由条件推出结论
条件变为
3sin[(x+y)+x]=sin[(x+y)-x]————根据三角函数两角和公式sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ 展开得
3sin(x+y)cosx-3cos(x+y)sinx=sin(x+y)cosx+cos(x+y)sinx,化简
2sin(x+y)cosx=4cos(x+y)sinx
因为x≠kπ+π/2 ,所以cosx≠0
因为x+y≠kπ+π/2,所以cos(x+y)≠0
于是,两边同除以cos(x+y)cosx得
tan(x+y)=2tanx
令a=x+y,则条件变为
3sin(a-x)=sin(a+x),展开得
3sinacosx-3cosasinx=sinacosx+cosasinx,移项
2sinacosx=4cosasinx
tana=2tanx,于是
tan(x+y)=2tanx
tan(x+y)=2tanx(x,x+y≠kπ+π/2,k∈Z),证3siny=sin(2x+y)答对有奖!
arcsin(sinx+siny)+arc(sinx-siny)=kπ/2,K为奇数,求sin^2x+sin^2y的值
sin(2x+y)=3siny,x≠kπ+π/2,x+y≠kπ+π/2(k∈Z)求证:tan(x+y)=2tanx
已知sin(2x+y)=5siny,(y不等于K派),求证;3tan=2tan(x+y)
siny=1/3,sin(x+y)=1,求sin(2x+y)
证明sin(x+y)sin(x-y)=sinx-siny
已知:3sinY=sin(2X+Y),求证tan(X+Y)=2tanX
已知5siny=sin(2x+y),求证:tan(x+y)=3/2tanx
证明sinx+cos(x+y)siny/cosx-sin(x+y)siny=tan(x+y)
一道三角函数题,若sin(x-y)cosy+cos(x-y)siny≥1,则x,y的取值范围分别是?(答案是x=2kπ+2分之π,k属于z,y属于R
求微分方程y'+sin[(x+y)/2]=sin[(x-y)/2]通解答案为当siny/2≠0时,通解为㏑|tany/4|=C-2sinx/2当siny/2=0时,特解y=2kπ
证明sin(x+y)sin(x-y)=(sinx)^2-(siny)^2.
证明cosx-cos(x+2y)/2siny= sin(x+y)证明cosX-cos(x+2y)/2siny= sin(x+y)
sinx-siny=1/3,cosx-cosy=2/3,sin(x+y)=?
cosx-cosy=1/2,sinx-siny=1/3,sin(x+y)=RT
sinx+siny=-1/3 cosx+cosy=1/2,求sin(x+y)的值.
已知x-y=派/3,且sin x-siny=1/2,求cos(x+y).
求证:sin(2x+y)/sinx-2cos(x+y)=siny/sinx(2)已知5siny=sin(2x+y),求证:tan(x+y)=3/2 tanx