当cos^2x-cos^2y=√3/2时,求sin(x+y)×sin(x-y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:15:10
当cos^2x-cos^2y=√3/2时,求sin(x+y)×sin(x-y)
x){wrr~qQ.}1Xm:66giThWyx:[iTO6;{ԱUU=@ Rj@N[]# Yo[wjjE"P5PLhP`@ݨ u-0dZ 6yv )

当cos^2x-cos^2y=√3/2时,求sin(x+y)×sin(x-y)
当cos^2x-cos^2y=√3/2时,求sin(x+y)×sin(x-y)

当cos^2x-cos^2y=√3/2时,求sin(x+y)×sin(x-y)
∵ cos^2x-cos^2y=(cosx-cosy)(cosx+cosy=)= -2(sin(x/2-y/2))(sin(x/2+y/2))(cos(x/2-y/2))(cos(x/2+y/2))= -sin
(x-y)sin(x+y)=√3/2∴sin(x-y)sin(x+y) = -√3/2