数学:平面几何作图题已知三角形的三个分角线为ta,tb,tc求作此三角形.第一个回答没有图,也没说明符号,看不明白.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 10:39:22
数学:平面几何作图题已知三角形的三个分角线为ta,tb,tc求作此三角形.第一个回答没有图,也没说明符号,看不明白.
xYRWq Nue׿›bymoW/n_y,^ԟ>{m7R/v61[_T/jY?;__^/xK{~h?>￸_,='6$zɛ.Fq܀pE!G8xknwD;>kQKQY3mw,z4$b,ܜp_b}ϐ; Wl=@&TYP  ա^Q$Kqh=ęxIh4򕕝uPzgQ |KOaA˥9COV"'R3Fo4MHѱyłsY `6JJQ$g!x*:M4h&ہc_ҙn7D}`ʢ΄*i- Aَ BBGsCl݌ki64de@e%6FgLKtlA:25Cm}bSdh1[&fAzgrƱ_j$#z\_ѯ꟝50\$w9,r}6BgX)p>#8ەKrZHl*ܕ"t N"<8a'u'2 DR3owDHb\g8g܎puCMprDF!y 2 7 MM+L|\,W6شL?Mg !:CeXQùhw@Mk)8}:V}EE*$!8 @{C=4KsC Yxbtgvlk| {kkdx[ 1¤\(&=L[:⟼PuT*jdxl#fN0">U3ͣ,>8ACnqCX/BC*5)n ~! ۠~BrO2uzq3aP,`H(?9~/6K qM|>̚A <=Xwb 4xMctX/ӕ kW잌Z ENQd:̢n H3 H(@ K Z%$ii8?įG)Duro)CEv _J]^1EXݣȶ8eAFoᡰIknUBJ,bpgi0(I ͆m}~H>v'm0ڻtٴ}S;ܔ7vZ' =Oi՟ =7cׁ"6Ѯw9,nflcưc<Ƽ1քJ*~oCԧII\6B4[R#ANK~/\a_ 2=PD~ ª0A2}P6lr R3,1A-*oU~ XK2GrKy}Jչ(Ҡ!16%e#AT= K" ˥t ]%RˊoL}%jc,'5sq;)0bJ#Wt{1mQFKQh ~44ZfM`o'ܙpwX NFyC3\y8F{;wx$V 7KX,3 R!զ~C;S%J935A$8і VGv(6IO fl)jJt6 3RNq妙lBEIq;(bOȜ^^C6)A:fŗʄ ;5eLp:Yl"vp{ KwYUåe<ǩAt.s ʏ&[[>ѫ~)r7ΈKe!qҗ5A2b !4LBeC<,^+&J3z)Kl6$**QrVJae̽};A:R]fǗvҠJM.sHxl%’&)5iNUAʼ%U\j$dM[i(<%4l4T  Jߝ$}u;czt8P:IEDuL3/x!V2Hp5$Af'

数学:平面几何作图题已知三角形的三个分角线为ta,tb,tc求作此三角形.第一个回答没有图,也没说明符号,看不明白.
数学:平面几何作图题
已知三角形的三个分角线为ta,tb,tc求作此三角形.
第一个回答没有图,也没说明符号,看不明白.

数学:平面几何作图题已知三角形的三个分角线为ta,tb,tc求作此三角形.第一个回答没有图,也没说明符号,看不明白.
三角形角平分线的交点是三角形的内切圆的圆心
连接AB,过T做TD⊥AB于D
以T为圆心,TD为半径做圆
分别过A、B做圆的切线,交点为C
三角形ABC

平面几何
四个重要定理:
梅涅劳斯(Menelaus)定理(梅氏线)
△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是 。
塞瓦(Ceva)定理(塞瓦点)
△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理
四边形的两对边乘积之和等于其对角线...

全部展开

平面几何
四个重要定理:
梅涅劳斯(Menelaus)定理(梅氏线)
△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是 。
塞瓦(Ceva)定理(塞瓦点)
△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理
四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:
1. 设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:。
【分析】CEF截△ABD→(梅氏定理)
【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2. 过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)
DGF截△ACM→(梅氏定理)
∴===1
【评注】梅氏定理
3. D、E、F分别在△ABC的BC、CA、AB边上,
,AD、BE、CF交成△LMN。
求S△LMN。
【分析】
【评注】梅氏定理
4. 以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。求证:AE、BF、CG相交于一点。
【分析】
【评注】塞瓦定理
5. 已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理
6. 已知正七边形A1A2A3A4A5A6A7。
求证:。(第21届全苏数学竞赛)
【分析】
【评注】托勒密定理
7. △ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
【分析】
【评注】西姆松定理(西姆松线)
8. 正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比为AM:AC=CN:CE=k,且B、M、N共线。求k。(23-IMO-5)
【分析】
【评注】面积法
9. O为△ABC内一点,分别以da、db、dc表示O到BC、CA、AB的距离,以Ra、Rb、Rc表示O到A、B、C的距离。
求证:(1)a·Ra≥b·db+c·dc;
(2) a·Ra≥c·db+b·dc;
(3) Ra+Rb+Rc≥2(da+db+dc)。
【分析】
【评注】面积法
10.△ABC中,H、G、O分别为垂心、重心、外心。
求证:H、G、O三点共线,且HG=2GO。(欧拉线)
【分析】
【评注】同一法
11.△ABC中,AB=AC,AD⊥BC于D,BM、BN三等分∠ABC,与AD相交于M、N,延长CM交AB于E。
求证:MB//NE。
【分析】
【评注】对称变换
12.G是△ABC的重心,以AG为弦作圆切BG于G,延长CG交圆于D。求证:AG2=GC·GD。
【分析】
【评注】平移变换
13.C是直径AB=2的⊙O上一点,P在△ABC内,若PA+PB+PC的最小值是,求此时△ABC的面积S。
【分析】
【评注】旋转变换
费马点:已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O为费马点)
【分析】将CC‘,OO’, PP‘,连结OO’、PP‘。则△B OO’、△B PP‘都是正三角形。
∴OO’=OB,PP‘ =PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。
由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。
∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。
14.(95全国竞赛) 菱形ABCD的内切圆O与各边分别交于E、F、G、H,在弧EF和弧GH上分别作⊙O的切线交AB、BC、CD、DA分别于M、N、P、Q。
求证:MQ//NP。
【分析】由AB‖CD知:要证MQ‖NP,只需证∠AMQ=∠CPN,
结合∠A=∠C知,只需证
△AMQ∽△CPN
←,AM·CN=AQ·CP。
连结AC、BD,其交点为内切圆心O。设MN与⊙O切于K,连结OE、OM、OK、ON、OF。记∠ABO=φ,∠MOK=α,∠KON=β,则
∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。
∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α
∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM
又∠OCN=∠MAO,∴△OCN∽△MAO,于是,
∴AM·CN=AO·CO
同理,AQ·CP=AO·CO。
【评注】
15.(96全国竞赛)⊙O1和⊙O2与ΔABC的三边所在直线都相切,E、F、G、H为切点,EG、FH的延长线交于P。求证:PA⊥BC。
【分析】
【评注】
16.(99全国竞赛)如图,在四边形ABCD中,对角线AC平分∠BAD。在CD上取一点E,BE与AC相交于F,延长DF交BC于G。求证:∠GAC=∠EAC。
证明:连结BD交AC于H。对△BCD用塞瓦定理,可得
因为AH是∠BAD的角平分线,由角平分线定理,
可得,故。
过C作AB的平行线交AG的延长线于I,过C作AD的平行线交AE的延长线于J。
则,
所以,从而CI=CJ。
又因为CI//AB,CJ//AD,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ。
因此,△ACI≌△ACJ,从而∠IAC=∠JAC,即∠GAC=∠EAC。
已知AB=AD,BC=DC,AC与BD交于O,过O的任意两条直线EF和GH与四边形ABCD的四边交于E、F、G、H。连结GF、EH,分别交BD于M、N。求证:OM=ON。(5届CMO)
证明:作△EOH△E’OH‘,则只需证E’、M、H‘共线,即E’H‘、BO、GF三线共点。
记∠BOG=α,∠GOE’=β。连结E‘F交BO于K。只需证=1(Ceva逆定理)。
===1
注:筝形:一条对角线垂直平分另一条对角线的四边形。
对应于99联赛2:∠E’OB=∠FOB,且E‘H’、GF、BO三线共点。求证:∠GOB=∠H‘OB。
事实上,上述条件是充要条件,且M在OB延长线上时结论仍然成立。
证明方法为:同一法。
蝴蝶定理:P是⊙O的弦AB的中点,过P点引⊙O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N。求证:MP=NP。
【分析】设GH为过P的直径,FF’F,显然‘∈⊙O。又P∈GH,∴PF’=PF。∵PFPF‘,PAPB,∴∠FPN=∠F’PM,PF=PF‘。
又FF’⊥GH,AN⊥GH,∴FF‘‖AB。∴∠F’PM+∠MDF‘=∠FPN+∠EDF’
=∠EFF‘+∠EDF’=180°,∴P、M、D、F‘四点共圆。∴∠PF’M=∠PDE=∠PFN。
∴△PFN≌△PF‘M,PN=PM。
【评注】一般结论为:已知半径为R的⊙O内一弦AB上的一点P,过P作两条相交弦CD、EF,连CF、ED交AB于M、N,已知OP=r,P到AB中点的距离为a,则。(解析法证明:利用二次曲线系知识)

收起

数学:平面几何作图题已知三角形的三个分角线为ta,tb,tc求作此三角形.第一个回答没有图,也没说明符号,看不明白. (作图题)已知三角形的三个高,求作这个三角形.比如这个三角形的高分别是4、5、6。有不用计算直接作图的吗? 平面几何尺规作图,已知三条直线分别为一个三角形的高,求作此三角形.请高手帮忙是三条线段 三角形五心的平面几何题, 数学平面几何题 求解 求初二数学全等三角形作图题 已知三角形一角及由此角定点向对边所做的高和三角形的周长,做这个三角形数学作图要先计算出边长吗 一道数学类比推理的题已知平面几何中有勾股定理,若直角三角形abc的两边ab,ac互相垂直,则三角形的三边长满足ab的平方+ac的平方=bc的平方,类比上述定理,若三棱锥s-abc的三个侧面sab,sac,sbc两两 作图题:已知三角形ABC(任意),求作一个等边三角形使它的三个顶...在三角形ABC中 作等边三角形使顶点分别在 100分25道几何证明题,七年级的平面几何,不要三角形的稍微简单点,要带图.如:平行线的判定,角平分线等 在直角坐标系中,已知三角形ABC三个顶点的坐标分别是A(-3,-1),B(1,3),C(2,-3),请作图并求出三角形ABC的 作图题:已知三角形ABC(任意),求作一个等边三角形使它的三个顶点分别在ABC三边上.怎么作啊 平面几何,三角形. 已知三角形的两个角和周长 画三角形 (要求尺规作图) 求一道数学作图题已知某三角形三边垂线的垂足(只有三个点)求做出原三角形.PS:这个一定要用比较易懂的东西去证,那个……有人能在几何画板上画一下吗?还有……,我是马上就要中考 求一道几何的作图题画一个任意三角形,你能作出它的三个内角的和吗原题还有:用尺规作图,不要求写作法,保留作图痕迹.但这里不得不说作图过程,可追分,但请尽快 数学平面几何 数学平面几何