(y^3x^2+xy)y'=1求微分方程的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:23:24
(y^3x^2+xy)y'=1求微分方程的通解
x)Ө33ҮԬT5|uO;ڞM|EY-/fX&Hhv6cFuiSKOŐTG[R@t+t*4^Rek_a~+@g3?rƶ?kXG3ٜΧk{c:\/@C`*[8 ,4aLm#;ڟ/_ ;v

(y^3x^2+xy)y'=1求微分方程的通解
(y^3x^2+xy)y'=1求微分方程的通解

(y^3x^2+xy)y'=1求微分方程的通解
∵(y³x²+xy)y'=1 ==>dx/dy=y³x²+xy
∴dz/dy=-yz-y³ (令z=1/x).(1)
∵方程(1)是一阶线性方程
∴有公式求得方程(1)的通解是
z=Ce^(-y²/2)-y²+2 (C是积分常数)
==>x=1/[Ce^(-y²/2)-y²+2]
故原方程的通解是x=1/[Ce^(-y²/2)-y²+2] (C是积分常数).