已知x^2+y^ 2=1,XY+(X-1)(Y-1)=0请求出一元二次方程t^2+|x+y|t+xy=0的两个根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 16:30:29
已知x^2+y^ 2=1,XY+(X-1)(Y-1)=0请求出一元二次方程t^2+|x+y|t+xy=0的两个根
xTn@~*UUJ#;R E-`RmRhSjFHKxɯn\vo曙ݝ䲤2tBll* /%6a1qK/ dwlRe=AM+eh~kz?|~(43mCzDJ",X(ޠEߋBP&3O}]_WǠ+>-Ș:RѲT-pa \g8#Eg;pˤTav ,{ޠ z _̨U>4y6vf:3;hj :oϫa{8^^EXh xLMoKA7 ln|dvY܇#N\.%.QLM63l,vBΤ#2QOu

已知x^2+y^ 2=1,XY+(X-1)(Y-1)=0请求出一元二次方程t^2+|x+y|t+xy=0的两个根
已知x^2+y^ 2=1,XY+(X-1)(Y-1)=0请求出一元二次方程t^2+|x+y|t+xy=0的两个根

已知x^2+y^ 2=1,XY+(X-1)(Y-1)=0请求出一元二次方程t^2+|x+y|t+xy=0的两个根
已知xy+(x-1)(y-1)=0
xy+xy-x-y+1=0
2xy-(x+y)+1=0
所以2xy=(x+y)-1
已知x² +y² =1
x² +2xy+y² =1+2xy
所以(x+y)² =1+2xy 将2xy=(x+y)-1代入得:
(x+y)² =1+(x+y)-1
(x+y)²-(x+y)=0
(x+y)(x+y-1)=0
x+y=0 或x+y=1
将结果代入2xy=(x+y)-1得:
2xy=0-1 xy=-1/2或2xy=1-1 xy=0
将x+y=0或x+y=1、xy=-1/2或 xy=0代入t²+|x+y|t+xy=0得:
t²+0+0=0  解得:t=0
t²+t-1/2=0 无解
t²+0-1/2=0 解得:t=√2/2
t²+t+0=0  解得:t=0 
因此:两个根是t=√2/2或t=0.

用配方法解方程:x2 - 4x -2=0. 21.(8分)先化简,再求值:()轴相交于D、E.(1)请求出A、B两点的坐标;(2)若点P是弧ADB上一动

xy+(x-1)(y-1)=0 xy+xy-x-y+1=0 2xy-(x+y)+1=0 2xy=(x+y)-1;
x² +y² =1  x² +2xy+y² =1+2xy;
得出: (x+y)² =1+2xy;代入2xy=(x+y)-1,得:(x+y)² =1...

全部展开

xy+(x-1)(y-1)=0 xy+xy-x-y+1=0 2xy-(x+y)+1=0 2xy=(x+y)-1;
x² +y² =1  x² +2xy+y² =1+2xy;
得出: (x+y)² =1+2xy;代入2xy=(x+y)-1,得:(x+y)² =1+(x+y)-1 (x+y)²-(x+y)=0
(x+y)(x+y-1)=0 x+y=0 或x+y=1;
而:2xy=(x+y)-1,可得:2xy=1,
即:xy=-1/2或2xy =0;
将x+y=0或x+y=1、xy=-1/2或 xy=0代入t²+|x+y|t+xy=0得:
t=√2/2或t=0。

收起