用数学归纳法证明4的2n+1次+3的n+2次能被13整除

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 10:28:45
用数学归纳法证明4的2n+1次+3的n+2次能被13整除
x]N@vɝ!LD_IF7 J"ZA44&*`?7ә'ZEyҷ3_OΜ;+>ǟE_ʢYOz 5 kp6 ߟ7:?d3HX?d NN-g@$ %VTPH% M`5`!32@kiq_ )ߝ ъ{ʧ'c@\,yd(@8H2b05X$A*ԨXU}$6iAoT>CP1;a]wrCWTMDz\,wf(3Jjl<Ԗ̎ifynM

用数学归纳法证明4的2n+1次+3的n+2次能被13整除
用数学归纳法证明4的2n+1次+3的n+2次能被13整除

用数学归纳法证明4的2n+1次+3的n+2次能被13整除
证明:
(1)N=1:
4^(2+1)+3^(1+2)=64+27=91=7*13
显然能够被13整除.
(2)假设N=K时,原式能够被13整除.
那么当N=K+1时有:
4^[2(k+1)+1]+3^(k+1+2)=4^(2k+3)+3^(k+3)=4^(2k+1)*16+3^(k+2)*3=4^(2k+1)*(13+3)+3^(k+2)*3
=13*4^(2k+1)+3*4^(2k+1)+3*3^(k+2)
=13*4^(2k+1)+3*[4^(2k+1)+3^(k+2)]
因为:4^(2k+1)+3^(k+2)能够被13整除,
所以,上式也能够被13整除.
综上所述,4的(2n+1)次方+3的(n+2)次方能被13整除