因式分解:(xy+1)(x+1)(y+1)+xy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 23:40:17
因式分解:(xy+1)(x+1)(y+1)+xy
x){:{=O;^,_~Ϭ{:** ` vEMR>Z lȲGBSDX0q[ԮЮ&Ҥ] ֮DV@Al sp9ƩO4 !{z({7 m{'?mdGÓMdd`P3҆;ɜƧk?6OEsNyGX<`'X]

因式分解:(xy+1)(x+1)(y+1)+xy
因式分解:(xy+1)(x+1)(y+1)+xy

因式分解:(xy+1)(x+1)(y+1)+xy
(xy+1)(x+1)(y+1)+xy
=(xy+1)(xy+1+x+y)+xy
=(xy+1)(xy+x+1)+y(xy+1)+xy
=(xy+1)(xy+x+1)+y(xy+1+x)
=(xy+x+1)(xy+y+1)

(xy+1)(x+1)(y+1)+xy
展开(x+1)(y+1)展开,得
(xy+1)(xy+x+y+1)+xy
即(xy+1)(xy+1+x+y)+xy
将(xy+1)当做一个整体,展开得
(xy+1)^2+(xy+1)(x+y)+xy
十字相乘法,得
(xy+x+1)(xy+y+1)
答案:(xy+1)(x+1)(y+1)+xy = (xy+x+1)(xy+y+1)