已知数列{an}满足a1=1,a(n+1)=2an+1(n∈N*).证明1/a2+1/a3+1/a4+.+1/an+1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:45:16
已知数列{an}满足a1=1,a(n+1)=2an+1(n∈N*).证明1/a2+1/a3+1/a4+.+1/an+1
xUn0~HH(!M2;m7DӛcH .IP)iRK;4ᢨC7h oR+vژ(S,l!Ԫهa~-ƷdMbx߾aؓèKFM\ *;XSV1jDoU( %hAj[El‹P!9`H3Y,xG'm iQ?ы°ы] *{`\X@`-ShFBtH%:l I8>> OaP Y7uȅ2g&,U plL[agC7=)GlTв#i&5u@h **ɇl(Z7dxTH^Z糼6 |pSl!f6MML'~`AA9T,#("BM~I_[s[(a$+< =d Kk &eeReS"l I ٺW̉%\M珇qWAgQ"|{q~TBK"xeB*}rM҃Y6"xϟbr71Ө?[.

已知数列{an}满足a1=1,a(n+1)=2an+1(n∈N*).证明1/a2+1/a3+1/a4+.+1/an+1
已知数列{an}满足a1=1,a(n+1)=2an+1(n∈N*).证明1/a2+1/a3+1/a4+.+1/an+1

已知数列{an}满足a1=1,a(n+1)=2an+1(n∈N*).证明1/a2+1/a3+1/a4+.+1/an+1
a2=2a1+1=3 a3=2a2+1=7
a(n+1)=2an+1a(n+1)>2an a2>2a1 1\a2

由a1=1,a(n+1)=2an+1(n∈N*),得
a(n+1)+1=2(an+1)(n∈N*),an>0
∴ {an+1}是以2为首项,2为公比的等比数列
则 an+1=2^n,an=2^n-1(n∈N*)
n>2时,an=2^n-1=(1+1)^n-1
...

全部展开

由a1=1,a(n+1)=2an+1(n∈N*),得
a(n+1)+1=2(an+1)(n∈N*),an>0
∴ {an+1}是以2为首项,2为公比的等比数列
则 an+1=2^n,an=2^n-1(n∈N*)
n>2时,an=2^n-1=(1+1)^n-1
=C(0,n)+C(1,n)+C(2,n)+…+C(n-2,n)+C(n-1,n)+C(n,n)-1
>n(n+1)>0
1/an<1/[n(n+1)]=1/n-1/(n+1)
故 1/a2+1/a3+1/a4+.....+1/an+1<1/3+(1/3-1/4)+(1/4-1/5)+…+[1/n-1/(n+1)]
=2/3-1/(n+1)<2/3

收起

a(n+1)=2an+1
a(n+1)+1=2(an+1),a1+1=2
∴an+1是首项为2,公比为2的等比数列。
an+1=2ⁿ,则an=2ⁿ-1.
1/a2+1/a3+....+1/a(n+1)
=1/(4-1)+1/(8-1)+1/(16-1)+1/(32-1)+1/(64-1).....+1/(2×2ⁿ-1)

全部展开

a(n+1)=2an+1
a(n+1)+1=2(an+1),a1+1=2
∴an+1是首项为2,公比为2的等比数列。
an+1=2ⁿ,则an=2ⁿ-1.
1/a2+1/a3+....+1/a(n+1)
=1/(4-1)+1/(8-1)+1/(16-1)+1/(32-1)+1/(64-1).....+1/(2×2ⁿ-1)
<1/(4-1)+1/(8-1)+1/(16-1)+1/(32-1)+1/32....+1/2ⁿ(从第5项开始放大)
=1/3+1/7+1/15+1/31+(1-1/2ⁿ-1/2-1/4-1/8-1/16)
=1/3+1/7+1/15+1/16-1/2ⁿ
<1/3+1/3-1/2ⁿ
=2/3-1/2ⁿ
<2/3
综上,命题得证。

收起