解方程1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)-1/(x+4)=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 02:48:08
解方程1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)-1/(x+4)=0
x){|i;6ר366ԆrL+ mC#M]OD&Hv6o>DO{=ٱY`ChBCM #1H7M/|o:@y0F`3!,1\Xa O{7 Eg" E [#]P8"|w /W2H$فB=

解方程1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)-1/(x+4)=0
解方程1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)-1/(x+4)=0

解方程1/(x^2+3x+2)+1/(x^2+5x+6)+1/(x^2+7x+12)-1/(x+4)=0
原方程可化为:
1/[(x+1)(x+2)] + 1/[(x+2)(x+3)] +1/[(x+3)(x+4)] - 1/(x+4)=0
裂项得:
1/(x+1) - 1/(x+2) + 1/(x+2) - 1/(x+3) + 1/(x+3) - 1/(x+4) - 1/(x+4)=0
即:1/(x+1) - 2/(x+4)=0
1/(x+1) = 2/(x+4)
x+4=2x+2
解得:x=2
经检验,原方程的解为:x=2