能被13整除的数的特征

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 06:11:17
能被13整除的数的特征
xVrHgT)BU|kfd8)\Ճr0H!ǝ[nr51D:f#!?j9[]a҆T_q5DRtg>) irɴqQǂ@QMuCdaU|A:xH.7ڸq ]{ F-GKW^US̫C6O3``TU  (ӾqFgl:D@ieD3~CP`9+%d]kҍ]qf(6#A~;\ NH?d7  ̸H<c։P#%|FW)=ғ}(BBQ? }fp}"νruQBLwEoe}x{QZ}>`V âm={G=ql-X;UMibSA" {( n:dm 1K@BhOpk4A}d۝S\)u{'O')nZ`.L⦀uNC$`g % ʑM3֤B|{cJ+ ~Y̰W4& &ȁy5 / ˻]$v- t~xC{s&p`Oy.t_a,. ;QJ>'ʧ G&J7*SLB*G2%| t-5H0y P⎉[=&TG:`&{ɾY!![ K}0lN{"(>!̄j0X~̾w

能被13整除的数的特征
能被13整除的数的特征

能被13整除的数的特征
参考一下:
(1)1与0的特性:
1是任何整数的约数,即对于任何整数a,总有1|a.
0是任何非零整数的倍数,a≠0,a为整数,则a|0.
(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除.
(3)若一个整数的数字和能被3整除,则这个整数能被3整除.
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除.
(5)若一个整数的末位是0或5,则这个数能被5整除.
(6)若一个整数能被2和3整除,则这个数能被6整除.
(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推.
(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除.
(9)若一个整数的数字和能被9整除,则这个整数能被9整除.
(10)若一个整数的末位是0,则这个数能被10整除.
(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除.11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!
(12)若一个整数能被3和4整除,则这个数能被12整除.
(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除.如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止.
(14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.
(15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止.
(16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除.
(17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除.
(18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除

一个整数末三位与末三位以前的数的差能被13整除,那么这个数就能被13整除

【能被13整除的数的特征】
一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述过程,直到能清楚判断为止。
例如:判断383357能不能被13整除。
这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被...

全部展开

【能被13整除的数的特征】
一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述过程,直到能清楚判断为止。
例如:判断383357能不能被13整除。
这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除。
这个方法也同样适用于判断一个数能不能被7或11整除。如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除。仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就一定不能被7整除。

收起