(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 18:54:12
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字.
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字.
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字.
(2^2+1) 等于5,其他各项均为奇数.
故(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1) 个位数等于 5.
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1 个位数等于 6.
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
先乘以(2^2-1) 再除以(2^2-1)
得:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
=[(2+1)(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1...
全部展开
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
先乘以(2^2-1) 再除以(2^2-1)
得:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
=[(2+1)(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+(2^2-1)]/(2^2-1)
=[(2+1)(2^128-1)+(2^2-1)]/(2^2-1)
=[(2+1)(2^128-1)]/(2^2-1)+1
=2^128
由于2^1=2 2^2=4 2^3=8 2^4=16
2^5=32 2^6=64
2^n末位是以(2,4,8,6)四个数为一周期循环
128/4=32能够整除,所以末位数是数字6
收起