(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)等于多少RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:41:45
(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)等于多少RT
x)036R&BAhcOv=]2醉A!6IEj/!g s_l_~ϬsV'?2Ϧ|}Ov/}}ix:i[˙Kl5h>}c]B* -t 04)g un F 1=K

(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)等于多少RT
(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)等于多少
RT

(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)等于多少RT
思路:在原式乘上(2^2-1),不断的产生平方差,可以巧解.最后再除以3原式=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1) /3 =(2^4-1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)/3 =(2^8-1)(2^8+1)(2^16+1)(2^32+1)/3 =(2^16-1)(2^16+1)(2^32+1)/3 =(2^32-1)(2^32+1)/3 =(2^64-1)/3