求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 02:56:51
xOJ@I0a&(I~½0iZi+A\iTG\h}ls=|
nd`kclo45 p*ƀ{j;e[aFĒǔ<v'B@o-qˉ2^R5sB^NhSu˵;__@]QLR2RBqÆq]١ⵯr*XP+^F%>yz1 H9w
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
n(3n-1)=3n²-n.所以S=3(1²+2²+…+n²)-(1+2+…+n).其中第一组中的平方和=n(n+1)(2n+1)/6.
用数学归纳法,我算过了,很简单的。如果还不会,欢迎提问!
求证(2n)!/2^n*n!=1*3*5*……*(2n-1)
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
求证:1*2+2*5+3*8+…+n(3n-1)=n^2(n+1)
求证:N=(5^2)*(3^2n+1)*(2^n)-(3^n)*(6^n+2)
求证:Cn0+3Cn1+5Cn2+…+(2n+1) Cnn=(n+1)2n
求证2^n>2n+1(n>=3)
已知:n属于N且n=2,求证:1/2+1/3+…+1/n
求证:(2n)!/2∧n·n!=1·3·5…(2n-1)
求证:3^n> (n +2)*2^((n-1) (n∈N*,且n>2)
求证:3^n>(n+2)2^(n+1)(n>2,n∈N*)用二项式定理
求证1/2+3/4+5/8+...+(2n-1)/2^n
求证:N=(5^2)*(3^2n+1)*(2^n)-(3^n)*(6^n+2)能被13整除
求证:N=5*3^2n+1*2^n-3^n*6^n+2能被14整除
当n为正偶数,求证n/(n-1)+n(n-2)/(n-1)(n-3)+...+n(n-2).2/(n-1)(n-3)...1=n
∑(n^2-n^3/2^n+3^n)求证他是绝对收敛 n=1
求证1/(n+1)+1/(n+2)+.+1/(3n+1)>1 [n属于N*]
求证:对于任意自然数n,n(n+5)-(n-3)(n+2)的值都能被6整除
求证;任意自然数n,n(n+5)-(n-3)(n+2)的值都能被6整除.