英语翻译The interpretation of (5.27) is that the fraction of particles scattered into the solid angle dQ is proportional to dΩ and the density of the target.From (5.27) we see that σ(θ) can be interpreted as the effective area of a target part

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 17:33:05
英语翻译The interpretation of (5.27) is that the fraction of particles scattered into the solid angle dQ is proportional to dΩ and the density of the target.From (5.27) we see that σ(θ) can be interpreted as the effective area of a target part
xURF}+fa7NgMm#)er/S;%$  LhA&~Z$_ >dD@#i=9;ijƹgv3?R"+ղ5DCV7ocU4%)MLYQ3dDOl~eJjjVp&P%MNa]%Qjkj&$r"Z$IQ!oh/~JQ3%FEDLt<-ݓ<@$j(.++~xIDJhfp 雜 Of/QT# ~W`ijdM $OH@LBe?RdB|e )!my>9}BtYX4$A$MdE6.g`(IMt  *f8@/r'NG<-"i0qbp8sEa-H,&MK/T3w S%X/e_Yg36-DgǬX=8.\:J{7ӸzhžiB_xf ^aҀ[

英语翻译The interpretation of (5.27) is that the fraction of particles scattered into the solid angle dQ is proportional to dΩ and the density of the target.From (5.27) we see that σ(θ) can be interpreted as the effective area of a target part
英语翻译
The interpretation of (5.27) is that the fraction of particles scattered into the solid angle dQ is proportional to dΩ and the density of the target.From (5.27) we see that σ(θ) can be interpreted as the effective area of a target particle for the scattering of an incident particle into the element of solid angle dΩ.Particles that are not scattered are ignored.Another way of thinking about σ(θ) is that it is the ratio of the area bdbdty to the solid angle dΩ= sinθdθdφ,where b db dφis the infinitesimal cross-sectional area of the beam that scatters into the solid angle defined byθtoθ+ dθ and φ to φ+ dφ.The alternative notation for the differential cross section,dσ/dΩ,comes from this interpretation.

英语翻译The interpretation of (5.27) is that the fraction of particles scattered into the solid angle dQ is proportional to dΩ and the density of the target.From (5.27) we see that σ(θ) can be interpreted as the effective area of a target part
公式(23)的解释是这样的:散射到立体角dΩ的粒子数正比于dΩ和目标靶密度.从公式(23)我们看到,σ(θ)可以解释为入射目标的粒子所进入的立体角元dΩ的有效区域.没有散射的粒子可以忽略不计.针对σ(θ)还有一种考虑方法,即它是区域bdbdφ与立体角dΩ= sinθdθdφ的比值,其中,bdbdφ为散射进入立体角的光束的无穷小截面,这里的立体角由θ到 θ + dθ 与φ to φ + dφ定义.其他有关截面微分的表示方法也正是从这一解释中产生的.

解读 (5.27) 是目标的粒子分散到立体角 dQ 的分数是目标的 dΩ 和密度成正比。从 (5.27),我们看到 σ(θ) 可以被解释为目标粒子散射的入射粒子的立体角 dΩ 元素的有效面积。不分散的粒子将被忽略。∑(θ) 思考的另一种方法是它是到立体角 dΩ 区 bdbdty 的比例 = 的 sinθdθdφ,b db dφis 梁到立体角散射的无穷的截面积 φ + dφ,其中定义 byθtoθ...

全部展开

解读 (5.27) 是目标的粒子分散到立体角 dQ 的分数是目标的 dΩ 和密度成正比。从 (5.27),我们看到 σ(θ) 可以被解释为目标粒子散射的入射粒子的立体角 dΩ 元素的有效面积。不分散的粒子将被忽略。∑(θ) 思考的另一种方法是它是到立体角 dΩ 区 bdbdty 的比例 = 的 sinθdθdφ,b db dφis 梁到立体角散射的无穷的截面积 φ + dφ,其中定义 byθtoθ + dθ 和 φ。另类的符号的微分散射截面中,dσ/dΩ,来自这种解释。

收起

你先告诉我它的出处