数列求通项

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 21:18:45
数列求通项
xn@_%*ݵĽ q/ZgBݥ)BT*)-q@@Q.mJBxiN}fw!.(Rvv?3]|0okշ'pl6;2k[3&g z0\Ys5fK4V:vZ]_ZD-Ζez8UqPu+(whXi(s* !IQ .ԍ\? #NR̸1lIK'z 48nвWgFW*' ڿ}>z29MMw|,[%ab\Fmk:Q@)FI,Kpy^q(uzp|JOvE}>a>%'] u.H6^H% ]Lw_gͳf5vIo7IK /Q"r5MʫΓov):1Zj ?^ig#I[`RX1)h:.21b:zVFM2'RYA $ ZtQtՁfnøU!ZLLVN:"HG`oO_vO>/rR)o-$

数列求通项
数列求通项
 

数列求通项
(1)令:公差为d
an=(n-1)d+p,a(n+1)=nd+p.
a(n+1)an=n^2d^2+(2pd-d^2)+p^2-pd=n^2+3n+2
对于上式恒成立,那么d^2=1,2pd-d^2=3,p^2-pd=2
解之得 d=1,p=2.d=-1,p=-2(不合题意,舍去).
(2)令:a(n+2)a(n+1)=(n+1)^2+3(n+1)+2=(n+2)(n+3).
a(n+1)an=(n+1)(n+2)
两式相除得到,a(n+2)/an=(n+3)/(n+1).
当n=2k时.a(2k+2)/a(2k)=(2k+3)/(2k+1)
a(n)=a2·(a4/a2)·(a6/a4)·(a8/a6)···(a2k/a(2k-2))
=6/p·(5/3)·(7/5)···((2k+1)/(2k-3))
=(4k+2)/p=(2n+2)/p
当n=2k-3时.k>=2.a(2k-1)/a(2k-3)=(2k)/(2k-2)
而k>=3时
a(n)=a1·(a3/a1)·(a5/a3)·(a7/a5)···(a(2k-3)/a(2k-5))
=p·(4/2)·(6/4)·(8/6)···((2k-2)/(2k-4) )
= (k-1)p=(n+1)p/2
而当k=1.时,显然上式成立,当k=2,n=3时,得到a3=2p.显然上式也成立.
综上所述,当n=2k-1时.an=(n+1)p/2.当n=2k时,an=(2n+2)/p.其中k=1.2.3.
n=1.2.3.
PS:不懂可以继续问哈.

an=n + 1