已知对于f﹙x﹚有f﹙x+1﹚=3x³-4x²+5x-6,求f﹙x﹚
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:28:28
xRJ@~Ab)E{Rt[(zEjK_iWp٤!73a>{ΟGU+E2,.`p[R4x9qi3Jz~eHT<~DN8#Q<~
U!یZ2IKIGckL|4e(%sevS0Vf BLĀe ;02J'v]=N<dÌ+dЬ{
3I&xֽYH3+|_aD d@x-<9#
8kmOS}.=Fz
x4]@,;*[^R1\Y6b&ܟh\!G9IA)V$>F#`8$ 1XL4#$
已知对于f﹙x﹚有f﹙x+1﹚=3x³-4x²+5x-6,求f﹙x﹚
已知对于f﹙x﹚有f﹙x+1﹚=3x³-4x²+5x-6,求f﹙x﹚
已知对于f﹙x﹚有f﹙x+1﹚=3x³-4x²+5x-6,求f﹙x﹚
f﹙x+1﹚=3x³-4x²+5x-6
令 t=x+1
则 x=t-1 代入
f(t)=3(t-1)³-4(t-1)²+5(t-1)-6
=3t³-9t²+9t-3-4(t²-2t+1)+5t-5-6
=3t³-9t²+9t-4t²+8t+5t-18
=3t³-13t²+22t-18
令t=x
则 f(x)=3x³-13x²+22x-18
以x+1=t代入: 【x=t-1】
f(t)=3(t-1)³-4(t-1)²+5(t-1)-6
f(t)=3t³-13t²+22t-24
得:
f(x)=3x³-13x²+22x-24
f﹙x+1﹚=3x³-4x²+5x-6
设t=x+1则x=t-1
f(t)=3(t-1)³-4(t-1)²+5(t-1)-6
=(t-1)[3(t-1) ²-4(t-1)+5]-6
=(t-1)[3t ²-10t+12]-6
=3t³-7t²+2t+6
f﹙x﹚=3x³-7x²+2x+6
f(x+1) = 3x^3-4x^2+5x-6
let y=x+1
f(y) = 3(y-1)^3-4(y-1)^2+5(y-1) -6
=3y^3-13y^2+22y-12
f(x) = 3x^3-13x^2+22x-12