x(x+3)分之1+(x+3)(x+6)分之1+(x+6)(x+9)分之1+(x+6)(x+9)分之1+...+(x+99)(x+102)分之1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:54:48
x(x+3)分之1+(x+3)(x+6)分之1+(x+6)(x+9)分之1+(x+6)(x+9)分之1+...+(x+99)(x+102)分之1
xݒJ0_eL&ʰI6io1DߪX<U/"( Ńo"[V%K/ih<Jxqg;z.@ʄd@4M(cFP/|}.TļN5[JW+pA fk & `-A Ok!ÙE3OJ*؂BRu=5, X2_ؤ@H.>ON.O!:lxbY<Z Y0IF0.;J?O_ob[Ndܾ{4i6\X?SOg3ۯ>AƆ785Ѥǭ}=Li;RNJ e>-b_ T>4w*it=J۷ϧ/'7J {v

x(x+3)分之1+(x+3)(x+6)分之1+(x+6)(x+9)分之1+(x+6)(x+9)分之1+...+(x+99)(x+102)分之1
x(x+3)分之1+(x+3)(x+6)分之1+(x+6)(x+9)分之1+(x+6)(x+9)分之1+...+(x+99)(x+102)分之1

x(x+3)分之1+(x+3)(x+6)分之1+(x+6)(x+9)分之1+(x+6)(x+9)分之1+...+(x+99)(x+102)分之1
x(x+3)分之1+(x+3)(x+6)分之1+(x+6)(x+9)分之1+(x+6)(x+9)分之1+...+(x+99)(x+102)分之1
=1/3 [x(x+3)分之3+(x+3)(x+6)分之3+(x+6)(x+9)分之3+(x+6)(x+9)分之3+...+(x+99)(x+102)分之3]
=1/3[1/x-1/(x+3)+1/(x+3)-1/(x+6)+1/(x+6)-1/(x+9)+……+1/(x+99)-1/(x+102)]
=1/3[1/x-1/(x+102)]
=1/3×102/x(x+102)
=34/(x²+102x)
看其中的一个3/(x+3)(x+6)=[(x+6)-(x+3)]/(x+3)(x+6)
=(x+6)/(x+3)(x+6)-(x+3)/(x+3)(x+6)
=1/(x+3)-1/(x+6)
这个方法称为裂顶法