已知,G为△ABC的重心,求证:向量GA+向量GB+向量GC=0向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:07:36
已知,G为△ABC的重心,求证:向量GA+向量GB+向量GC=0向量
xmOPǿqр-}JMzc,M-f^!3=dQ% LyPxWXm ľ=w{O;Ǥf]4}8S]mT=]_mli TQcDfJiuDYʺ20ygP#U.K_TW RUjnΑd*w٥g=րQHR#en(KsSP @AdS^$Gk-ʇ8iFF*$`,(P%bG=&RGTOnR~ybw3eVV1szf(~p[h׮]VwOHͺ(w?/AMfqu)Xɜ{c=7 qlZ~+YcŮp5M>Ҍ5'QR{xߝ'5+

已知,G为△ABC的重心,求证:向量GA+向量GB+向量GC=0向量
已知,G为△ABC的重心,求证:向量GA+向量GB+向量GC=0向量

已知,G为△ABC的重心,求证:向量GA+向量GB+向量GC=0向量
证明:令,向量AB=a,向量AC=b.
延长AG,BG,CG分别交BC边,CA边,AB边于E,F,D.而,G为△ABC的重心,则有
向量BC=向量(AC-AB)=b-a).
向量AE=向量(AB+1/2*BC)=(a+b)/2.
向量AG=2/3*aE=(a+b),
向量BF=向量(AF-AB)=(b-2a)/2.
向量BG=2/3*向量BF=(b-2a)/3.
向量CD=向量(CB+BD)=-(BC+DB)=(a-2b)/2.
向量CG=2/3*向量CD=(a-2b)/3.
向量AG+向量BG+向量CG=(a+b)/3+(b-2a)/3+(a-2b)/3=0,
即,向量GA+向量GB+向量GC=0向量

如图:因为G点为三角形重心 所以GA:GD=2:1

B C点也是一样的 构造平行四边形GBG'C 那么向量GC=BG' 向量GA=G'G  

所以向量GA+向量GB+向量GC=向量G'G+向量GB+向量BG'=0向量

http://zhidao.baidu.com/question/97738864.html (这里的结果更强些,你的题只要前半即可。)

已知,G为△ABC的重心,求证:向量GA+向量GB+向量GC=0向量 G为三角形ABC的重心,求证:向量GA+向量GB+向量GC=0 一道数学题(请亲们画图说明)已知A,B,C为不共线的三点,G为△ABC的内的一点,若向量GA+向量GB+向量GC=向量0,求证:点G是△ABC的重心.反之若点G是△ABC的重心,求证:向量GA+向量GB+向量GC=向量0 一道数学题(请亲们画图说明)已知A,B,C为不共线的三点,G为△ABC的内的一点,若向量GA+向量GB+向量GC=向量0,求证:点G是△ABC的重心.反之若点G是△ABC的重心,求证:向量GA+向量GB+向量GC=向量0 G为△ABC所在平面内一点且满足向量GA+向量GB+向量GC=0向量,求证G为△ABC的重心. 已知G为三角形ABC重心,求证:GA向量+GB向量+GC向量=0,尽量写得详细些 关于向量证明重心定理 已知G为△ABC中一点,且→GA+→GB+→GC=→0求证:G为△ABC重心关于向量证明重心定理已知G为△ABC中一点,且→GA+→GB+→GC=→0求证:G为△ABC重心 如图,G是△ABC的重心,求证:向量GA+向量GB+向量GC=0.求详解, 已知ABC为不共线三点,G为三角形ABC内一点,若(向量GA+GB+GC=0),求证G为ABC重心? 已知点G是三角形ABC的重心,则向量GA+向量GB+向量GC= G为△ABC所在平面内一点且满足向量GA+向量GB+向量GC=0向量,求证G为△ABC的重心.顺便帮我作图回答,而且要很详细的那种 高中:G为△ABC的重心,则为何 向量GA + 向量GB + 向量GC =0 ?谢谢 已知ABC是不共线的三点,G是△ABC内一点,若向量GA+向量GB+向量GC=0求证G是△ABC的重心 向量GA+向量GB+向量GC=0,求证G是三角形ABC重心.向量GA+向量GB+向量GC=0求证:G是三角形ABC重心 已知三角形ABC的三边为a,b,c,所对角为A,B.C,G为三角形ABC重心,且a*向量GA+根号3*b*向量GB+根号3*c*向量GC=0向量(1)求证:向量GA+向量GB+向量GC=0向量(2)求角A G为△ABC的重心 √3|BC|向量GA+2|CA|向量GB+2√3|AB|向量GC=0 (向量AB*BC)/(BC*AC)的值G为△ABC的重心 √3|BC|向量GA+2|CA|向量GB+2√3|AB|向量GC=0 求(向量AB*向量BC)/(向量BC*向量AC)的值 设三角形ABC的重心为G,求GA向量加GB向量加GC向量等于0 若G是三角形ABC的重心,则向量GA+向量GB+向量GC=?