若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为不要用导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 04:56:15
若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为不要用导数
xQN@L3Lq駘`âKЀQ1(Lˊ_L5.{9ܩWH˳ 96E2n;DU{8s;sb HhyG7}xar9 o VY7CQ|̀&līQ<Ŧ7BZ%  6jQu,'kp:eSR ))!se%@PP̞|Cs=Upiv/I߾m$Wzݕ38UY>MQ3ݛ yz˪(e1yyLo*X

若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为不要用导数
若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为
不要用导数

若关于x的方程x^4+ax^3+ax^2+ax+1=0有实数根,则实数a的取值范围为不要用导数
x^4+ax^3+ax^2+ax+1=0,因为x=0不为方程的根,所以两边除以x^2,x^2+ax+a+a/x+1/x^2=0,令x+1/x=t,t^2=x^2+1/x^2+2,所以a(t+1)+t^2-2=0,令t+1=s,as=2-(s-1)^2=2-s^2+2s-1=1+2s-s^2,因为s=x+1/x+1范围是s<=-1或s>=3,不等于零,所以两边同除s得a=1/s-s+2(s<=-1或s>=3),a的范围是(负无穷,-2/3)或(2,正无穷)