已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 04:53:16
已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由.
xV[OG++T_hjw]TDHL]BH5q* T 16H)ή33fMiTU;swo=O7y5WڶWEdŮ]odNqSƆ(ٍwΟ5QO;gmH2㝥x~ ,f|٩+?&o"Z4m2gT[58>9rLc Lm]N w1nfU=*m$wg~ h 7%m d''P6NLNBK2'nD쵨D r2 r7n!+,}JIc(113 ݊2ˌd49l"C)cqԇfÑHi&C_!2#\` ĘH403K7t sёkT$yQB!ǥe U֣Tmty=/J>|#xaT/3Rb Bjw ٚ}Dtu/N-+2

已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由.
已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)
设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由.

已知,如图在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,连结FC(AB>AE)设AB:BC=K,是否存在这样的K值,使得△AEF∽△BFC,若存在,证明你的结论并求出K的值;若不存在,说明理由.
设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF:AE =BF :BC
即a :x =b-a :2x ,得b=3a
所以x2=ab=3a2,因此x=√3a
于是k=AB :BC =b :2x =3a :2 √3 a = √3:2 .

(1)△AEF∽△ECF.证明如下:
延长FE与CD的延长线交于G,
∵E为AD的中点,AE=DE,∠AEF=∠GED,
∴Rt△AEF≌Rt△DEG.
∴EF=EG.
∵CE=CE,∠FEC=∠CEG=90°,
∴Rt△EFC≌Rt△EGC.
∴∠AFE=∠EGC=∠EFC.
又∵∠A=∠FEC=90°,
∴Rt△AEF∽R...

全部展开

(1)△AEF∽△ECF.证明如下:
延长FE与CD的延长线交于G,
∵E为AD的中点,AE=DE,∠AEF=∠GED,
∴Rt△AEF≌Rt△DEG.
∴EF=EG.
∵CE=CE,∠FEC=∠CEG=90°,
∴Rt△EFC≌Rt△EGC.
∴∠AFE=∠EGC=∠EFC.
又∵∠A=∠FEC=90°,
∴Rt△AEF∽Rt△ECF.
(2)设AD=2x,AB=b,DG=AF=a,则FB=b-a,
∵∠GEC=90°,ED⊥CD,
∴ED2=GD•CD
∴x2=ab,
假定△AEF与△BFC相似,则有两种情况:
一是∠AFE=∠BCF;则∠AFE与∠BFC互余,于是∠EFC=90°,因此此种情况是不成立的.
二是∠AFE=∠BFC.
根据△AEF∽△BFC,
于是:AF AE =BF BC ,即a x =b-a 2x ,得b=3a.
所以x2=ab=3a2,因此x= 3 a,
于是k=AB BC =b 2x =3a 2 3 a = 3 2 .

收起

.(1)相似,如图2,证明:延长EF与CD的延长线交于点G.在Rt△AEF与Rt△DEG中,∵ E是AD的中点,∴ AE=ED.∠AEF=∠DEG,∴ △AFE≌△DGE.∴ △AFE=△DGE.∴ E为FG的中点.又CE⊥FG,∴ FC=GC.∴ ∠CFE=∠G.∴ ∠AFE=∠EFC.又△AEF与△EFC均为五角三角形,∴ △AEF∽△EFC.
(2)①存在.如果∠BCF=∠AEF,...

全部展开

.(1)相似,如图2,证明:延长EF与CD的延长线交于点G.在Rt△AEF与Rt△DEG中,∵ E是AD的中点,∴ AE=ED.∠AEF=∠DEG,∴ △AFE≌△DGE.∴ △AFE=△DGE.∴ E为FG的中点.又CE⊥FG,∴ FC=GC.∴ ∠CFE=∠G.∴ ∠AFE=∠EFC.又△AEF与△EFC均为五角三角形,∴ △AEF∽△EFC.
(2)①存在.如果∠BCF=∠AEF,即k=23=BCAB时,△AEF∽△BCF.证:当23=BCAB时,3=DEDC.∴ ∠ECG=30°.∴ ∠ECG=∠ECF=∠AEF=30°,∴ ∠BCF=90°-60°=30°.又△AEF和△BCF均为直角三角形.∴ △AEF∽△BCF. ②因为EF不平行于BC,∴ ∠BCF≠∠AFE.∴ 不存在第二种相似情况.

收起

已知:如图,在平行四边形ABCD中,E为AD中点,三角形BCE是等边三角形.求证:四边形ABCD是矩形 已知:如图,在矩形ABCD中,E为AD中点,EF⊥EC交AB于F,联结FC(AB>AE) 如图,在矩形ABCD中,E为AD的中点,F为CE的中点,S三角形BPD=6cm2,则矩形ABCD的面积为 .如图,在矩形ABCD中,E为AD的中点,F为CE的中点,S三角形BPD=6cm2,则矩形ABCD的面积为P是F,写错了,谢 如图,在矩形ABCD中,E是AD中点,且EB垂直EC,若矩形ABCD的周长为48cm,则矩形ABCD的面积为多少 如图在矩形ABCD中,已知AB=2AD,E为AB的中点,M为DE的中点,将△ADE沿DE折起,使AB=AC求证AM⊥平面BCDE 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标, 已知:如图,在矩形ABCD中,AD=8,AB=3,点E是BC的中点.求点D到AE的距离 如图在矩形ABCD中,BC=2AB,E是AD的中点,求证:EB⊥EC 已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F(AB>AE).问:△AEF与△EFC是否相似?若相似,证明你 2.如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD,E、F分别为CD、PB的中点. 如图,E.F分别为矩形ABCD的边AD.BC的中点,若矩形ABCD相似矩形EABF,AB=1..求矩形ABCD的面积. 如图,E.F分别为矩形ABCD的边AD.BC的中点,若矩形ABCD相似矩形EABF,AB=1.求矩形ABCD的面积. 如图在矩形ABCD中,AB=1,E.F分别为AD CD的中点,延BE将△ABE折叠,若点A恰好如图在矩形ABCD中,AB=1,E.F分别为AD CD的中点,延BE将△ABE折叠,若点A恰好落在BF上,别AD=—— 如图.在平行四边形ABCD中,E为CD中点,三角形ABE是等边三角形,求证:四边形ABCD是矩形. 如图,在矩形ABCD中,AB=12,AD=10,将此矩形折叠,使点B落在AD边的中点E处,则折痕FG的长为 ? 已知如图,正方形ABCD中,点E在AD边上,且AE=四分之一AD,F为AB中点,求证:△CEF是直角三角形 如图,E.F分别为矩形ABCD的边AD.BC的中点,若矩形ABCD相似矩形EABF,AB=10.求矩形ABCD的面积.如图,E.F分别为矩形ABCD的边AD.BC的中点,若矩形ABCD相似矩形EABF,AB=10..求矩形ABCD的面积. 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA垂直于平面ABCD,AP=AB=2,BC=2倍根号2,E,F分别为AD,PC的中点