已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 21:51:51
已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?
xS9N@ MllOU&(  (@BPH X,bb); $'y{BH^gdE[ť%\jNh Y{RZ񗙄~*ٽY4#'I|ЉS߉[w'zZn$ʘRfTKzCºFZ{e0ejmiz|f G ƿbT9KB4Ob#GAx@='L#YbKLCp # |Vw[è9:DN*#r˂xD@R-5$}/d6Teqz bwY<$&Z{0X;sSH$vyɺyMǡlY( 67RccNސdf2Zv5xJbl|<+un;_~lef\Kՙ" \3

已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?
已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?

已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?
因为周期为π,则T=2π/ω=π
ω=2
所以 f(x)=Asin(2x+φ)
因为最低点为M(2∏/3,-2)
则最底点是sin(2*2π/3+φ)=sin(4π/3+φ)=-1
则4π/3+φ=2kπ-π/2
φ=2kπ-π/2-4π/3=2kπ-11π/6=2kπ-2π+π/6=2(k-1)π+π/6
因为0<φ<π/2
所以φ=π/6
因为sin(2x+π/6)=-1
则-A=-2
A=2
所以f(x)=2sin(2x+π/6)
当-1<=sin(2x+π/6)<=1

2kπ-π/2<=2x+π/6<=2kπ+π/2
2kπ-2π/3<=2x<=2kπ+π/3
kπ-π/3<=x<=kπ+π/6
所以当x=π/6时有最大值f(π/6)=2
因为|0-π/6|=π/6
|π/6-π/12|=π/12
π/6>π/12
x=0离x=π/6比x=π/12离x=π/6要远些
所以当x=0时有最小值f(0)=1