f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2008)等于?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:34:39
f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2008)等于?
x)KӨд-̋>ߠoQmlΧۍDuvL0N0ƚڏHB'mi`~ \c+`cuû )8Po OY U.V)Mtgsjۚwy'MD3M[';|gkllrx XVAad[#l @5

f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2008)等于?
f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2008)等于?

f(x)=sin[π/3(x+1)]-根号3cos[π/3(x+1)],则f(1)+f(2)+f(3)+……+f(2008)等于?
∵f(x)=sin[π(x+1)/3]-√3cos[π(x+1)/3]
=sin(πx/3+π/3)-√3cos(πx/3+π/3)
=2sin(πx/3+π/3-π/3)
=2sin(πx/3)
∴f(x)周期T=2π/(π/3)=6
又f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0
且2008=334×6+4
故f(1)+f(2)+f(3)+……+f(2008)=f(1)+f(2)+f(3)+f(4)=2√3