定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd(1)求(1,2)*(3,-4)的值;(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(3)在(2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:37:55
定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd(1)求(1,2)*(3,-4)的值;(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(3)在(2
定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d),
(a,b)*(c,d)=a2+c2-bd
(1)求(1,2)*(3,-4)的值;
(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;
(3)在(2)的条件下,求(1,2)⊕(p,q)的结果;
(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.
定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d),(a,b)*(c,d)=a2+c2-bd(1)求(1,2)*(3,-4)的值;(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;(3)在(2
由题意可得:
(1)(1,2)*(3,-4)=1²+3²-2·(-4)=1+9+8=18;
.
(2)因为:(1,2)⊗(p,q)=(1·p,2·q)=(p,2q)=(2,-4)
所以解得:p=2,q=-2
.
(3)在(2)的条件下:
(1,2)♁(p,q)=(1,2)♁(2,-4)=(1+2,2-4)=(3,-2)
.
(4)已知x²+2xy+y²=5,x²-2xy+y²=1,那么:
4xy=(x²+2xy+y²)-(x²-2xy+y²)=4,2(x²+y²)=(x²+2xy+y²)+(x²-2xy+y²)=6
即得:xy=1,x²+y²=3
所以:(x,5)*(y,xy)=x²+y²-5xy=3-5=-2