关于指数函数的定积分 积分区间(0,正无穷大),被积函数为e^(-x2) ^

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:46:39
关于指数函数的定积分 积分区间(0,正无穷大),被积函数为e^(-x2) ^
xSRP~\uD3+"̴.#SMΨ`) b ک!Ir+t9IdgMfV`8%jhh^+5;}[/0cK zsN-.3ϮY ?Ilg#[+q)YJ?c} ΎiP5#I =Q6ڰYKcN-r?({QާkDp+\٤J`2mϾaAmE<=GUd%)g3>&ϼd^Z\C d %'m@Ǡc8_KƖqVԳ1^Ub˲_\^ ovhI=i*Zְsv3sk8ca_8l5.-S=Ң녝-@&g,&,dzEk lB[gE{Bih[%w8ݑX F:vfiA,qZY$6O؁( ZYN+i7O}`4`۸~g m2iL0SC$'ۆRo06

关于指数函数的定积分 积分区间(0,正无穷大),被积函数为e^(-x2) ^
关于指数函数的定积分 积分区间(0,正无穷大),被积函数为e^(-x2) ^

关于指数函数的定积分 积分区间(0,正无穷大),被积函数为e^(-x2) ^
这题没问题,可以转化为二重积分来做,
设原式=t
那么t²=∫(0,+∞)e^(-x²)dx ∫(0,+∞)e^(-t²)dt
= ∫∫e^(-x²-t²)dxdt
利用极坐标求,可以得到
t²= ∫(0,+∞)dα ∫(0,π/2)αe^(-α²)dβ
这个积分求出来结果是π/4
而且t>0,所以原式=√π /2

正无穷大有问题, 函数被积分之后是 e^2x/2在(0,无穷)

∫(0,∞)e^(-x^2)dx=∫(0,∞)x^[2*(1/2)-1]e^(-x^2)dx=(1/2)Γ(1/2)
已知Γ(1/2)=π^(1/2) 所以该积分结果为[π^(1/2)]/2
过程为:化积分为第二类欧拉积分并用第类欧拉积分的变形式Γ(s)=∫(0,∞)x^(2*s-1)e^(-x^2)dx求解

首先这个是没有原函数的,只有靠一些特殊方法来做,比如夹逼法,楼上已有人提到了,另外这个几分在概率统计中是个非常重要的结论,所以你记住就行了,不用推导。