已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;(2)若该二次函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 06:46:50
已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;(2)若该二次函数
xV]OP+$K-eD~Ybz "kI@Nts~(x?1= puqz.y?l |׭v.YL@S%VD\ߔƂ [V[:-Gq^,Cr$! \^hmAD%̫W P䆐l8;yCe| '4cIxěElm"h d5\2>Ju^kXMM WJHĮFB\Xڕed`4d3c4R(D^& ,G3x8eѐk=;27hGM -hϳW7Ro7$IpiDĔ3Bv,ʾ>5Wbyl/m^|Xj:ך@Ox shO ?Itvqq;{*؉-!qQ#ǹ=Xf?%%F@5L$MMz`\]5m[rRmba bikBCHD~{|a05k*AHў\nv`ӡ  d>yزp@<ÔtQ\Uܻ3$v<:9yzO㮧;o܈pd]\:?; tc6ł]\x xY6}7\g+-ܛ\MpNN:f)7MLXvt i~KQ

已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;(2)若该二次函数
已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;
已知二次函数Y=2X2-mx-m2.
(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;
(2)若该二次函数图象与X轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标.

已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;已知二次函数Y=2X2-mx-m2.(1)求证:对于任意实数m,该二次函数图像与X轴总有公共点;(2)若该二次函数
1.判别式=m^2+8m^2=9m^2>=0 二次函数图像与X轴总有公共点
2.2X2-mx-m2=0 的一个根为1 m^2+m-2=0 m=1或m=-2
当m=1时,x=1 x=-1/2 B点坐标(-1/2,0)
当m=-2时,x=1 x=-2 B点坐标(-2,0)

(2005•苏州)已知二次函数y=2x2-mx-m2.
(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;
(2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标.考点:抛物线与x轴的交点.分析:(1)依题意可得△=9m2得出△≥0,可得出二次函数图象与x轴总有公共点;
(2)把已知坐标代入可得m值,然后把m的值及y=0代入...

全部展开

(2005•苏州)已知二次函数y=2x2-mx-m2.
(1)求证:对于任意实数m,该二次函数图象与x轴总有公共点;
(2)若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标.考点:抛物线与x轴的交点.分析:(1)依题意可得△=9m2得出△≥0,可得出二次函数图象与x轴总有公共点;
(2)把已知坐标代入可得m值,然后把m的值及y=0代入二次函数可求出点B的坐标.(1)当二次函数图象与x轴相交时,
2x2-mx-m2=0,
△=(-m)2-4×2×(-m)2=9m2,
∵m2≥0,
∴△≥0.
∴对于任意实数m,该二次函数图象与x轴总有公共点;
(2)把(1,0)代入二次函数关系式,得0=2-m-m2,
∴m1=-2,m2=1,
当m=-2时,二次函数关系式为:y=2x2+2x-4,
令y=0,得:2x2+2x-4=0,
解得:x=1或-2,
∴二次函数图象与x轴有两个公共点的坐标是:(1,0),(-2,0);
又∵A点坐标为(1,0),则B(-2,0);
当m=1时,同理可得:B(-
12,0).点评:利用二次函数与x轴的交点特征,转化为求△=b2-4ac进行解答即可.

收起