设椭圆x2/a2+y2/b2=1的左右顶点分别为A(-2,0),B(2,0).离心率e=√3/2,过椭圆上任一点P 1,求椭圆的方程 2.求动点C的轨迹E的方程 3.设直线AC,C不同A,B.与直线X=2交于点R,D为线段RB中点,试试判断直线CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:06:50
设椭圆x2/a2+y2/b2=1的左右顶点分别为A(-2,0),B(2,0).离心率e=√3/2,过椭圆上任一点P 1,求椭圆的方程 2.求动点C的轨迹E的方程 3.设直线AC,C不同A,B.与直线X=2交于点R,D为线段RB中点,试试判断直线CD
设椭圆x2/a2+y2/b2=1的左右顶点分别为A(-2,0),B(2,0).离心率e=√3/2,过椭圆上任一点P 1,求椭圆的方程 2.求动点C的轨迹E的方程 3.设直线AC,C不同A,B.与直线X=2交于点R,D为线段RB中点,试试判断直线CD与曲线E位置关系.要求详解.一步步来,
过椭圆上任一点P作PQ⊥X轴,垂足为Q,点 C在QP的延长线上,且|QP|=|PC|
设椭圆x2/a2+y2/b2=1的左右顶点分别为A(-2,0),B(2,0).离心率e=√3/2,过椭圆上任一点P 1,求椭圆的方程 2.求动点C的轨迹E的方程 3.设直线AC,C不同A,B.与直线X=2交于点R,D为线段RB中点,试试判断直线CD
a=2,
e=c/a=√3/2 ,则c=ae=√3 ,b=√(a²-c²)=1
椭圆的方程:x²/4+y²=1
设C点坐标是(x,y),Q点坐标是(x,0),且P是QC的中点,则P坐标是(x,y/2)
P点坐标满足方程:x²/4+y²=1
所以C的轨迹E的方程:x²/4+(y/2)²=1,即:x²+y²=4
连接BC
∵ E的曲线是圆
∴ BC⊥AR
又 ∵ BR⊥AB
∠CAB= ∠CBR
O和D分别为AB、BR的中点,∠ACO= ∠CAB ,∠BCD= ∠CBR
∠ACO= ∠BCD
∴ ∠ACB= ∠OCD = 90°
CD与E的曲线是相切关系
1.x²/4+y²=1 2.动点C是什么,缺条件啊
那Q在哪?C打算怎么动?你一次补全不好吗,
设C(x,y) P(m,n) 因为C在QP延长线上,PQ垂直x轴 ,|QP|=|PC|
所以x=m,y=2n P在椭圆上 所以 m²/4+n²=1 m=x,n=y/2,带入 所以 ...
全部展开
1.x²/4+y²=1 2.动点C是什么,缺条件啊
那Q在哪?C打算怎么动?你一次补全不好吗,
设C(x,y) P(m,n) 因为C在QP延长线上,PQ垂直x轴 ,|QP|=|PC|
所以x=m,y=2n P在椭圆上 所以 m²/4+n²=1 m=x,n=y/2,带入 所以
x²/4+(y/2)²=1 x²/4+y²/4=1 即 x²+y²=4 ,是E的轨迹方程
CD与E相切
收起