定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数)(1)求f(x)的最值(2)设x1,x2属于[-1,1],且x1≠x2,若|f(x1)-f(x2)|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 00:44:52
定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数)(1)求f(x)的最值(2)设x1,x2属于[-1,1],且x1≠x2,若|f(x1)-f(x2)|
xRMK@1&%lRb?" 1Q^r!m-RD(RX?fnRkzyo潙ytL Fx+G)]5k[X`ހx<~9K6u-,WFwfaƒQT |eVwŔ0rBvKx-5[1JWr ) NQXSڰ*"Ҹ) uI9hB~)m$=>PM D&RNj% ~&i nњc ]z/Ey"bFv0/: ]AI-Dj/= ( 'X7ȩA=mք,E_0EQӿ-%y

定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数)(1)求f(x)的最值(2)设x1,x2属于[-1,1],且x1≠x2,若|f(x1)-f(x2)|
定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数)
(1)求f(x)的最值
(2)设x1,x2属于[-1,1],且x1≠x2,若|f(x1)-f(x2)|

定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数)(1)求f(x)的最值(2)设x1,x2属于[-1,1],且x1≠x2,若|f(x1)-f(x2)|
f(x)=x³-x+c
则:
f'(x)=3x²-1=3(x-√3/3)(x+√3/3)
则函数f(x)在[-1,-√3/3]上递增,在[-√3/3,√3、3]上递减,在[-√3/3,1]上递增,且:
f(-1)=c;f(-√3/3)=(2/9)√3+c;f(√3/3)=-(2/9)√3+c;f(1)=c
在函数f(x)在[-1,1]上的最小值是f(-√3/3)=-(2/9)√3+c,最大值是f(√3/3)=(2/9)√3+c
第二问中的:a>|f(x1)-f(x2)|,即只要a大于|f(x1)-f(x2)|的最大值即可,而|f(x1)-f(x2)|的最大值就是|f(-√3/3)-f(√3/3)|=(4/9)√4,则:a>(4/9)√3