【数学】(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/99²)(1-1/100²)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:26:30
xݑ]J@ǯ"$I
@^ bըFh `@Q[B^rlS~uA !dgvM70JYx2^kWّ`ׅ>8FmN8 Mٿj+m/а.@TVCkJE
#C biܗKٲD5v-O2pyKN6,ny #=?>;@~B|{dC|_h/9ElBgBY/%R$JHL]$vS"qZ
【数学】(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/99²)(1-1/100²)
【数学】(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……
(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/99²)(1-1/100²)
【数学】(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/99²)(1-1/100²)
用平方差
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)……(1-1/100)(1+1/100)
=(1/2)(3/2)(2/3)(4/3)……(99/10)(101/10)
中间约分
=(1/2)(101/100)
=101/200
平方差公式展开,然后化成假分数,规律比较明显啊
(1-1/2²)(1-1/3²)(1-1/4²)(1-1/5²)……(1-1/99²)(1-1/100²)
=(1+1/2)(1-1/2)(1+1/3)(1-1/3)(1+1/4)(1-1/4)……(1+1/99)(1-1/99)(1+1/100)(1-1/100)
=3/2×1/2×4/3×2/3×5/4×3/4×……100/99×98/99×101/100×99/100
=1/2×101/100
=101/200