lim x—>-2 (1/(x+2) - 12/(x^3 +8) ) 求极限~

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 21:25:01
lim x—>-2 (1/(x+2) - 12/(x^3 +8) ) 求极限~
xRMK@+{̚nl䏄&IZEVmEBQhE_8nƄ(~\7f[;p77kE.aH3uAi"Fr'~km_shiF!)4MF-(eEh>Ρ te95yJoD/sʇ+z0Iy!:Z:5U4OjC2[lT.U'_+Ɖ5sf)'C

lim x—>-2 (1/(x+2) - 12/(x^3 +8) ) 求极限~
lim x—>-2 (1/(x+2) - 12/(x^3 +8) ) 求极限~

lim x—>-2 (1/(x+2) - 12/(x^3 +8) ) 求极限~
lim x—>-2 1/(x+2)-12/(x^3 +8)
=lim x—>-2 (x^2-2x+4)/(x^3 +8)-12/(x^3 +8)
=lim x—>-2 [x^2-2x-8]/(x^3 +8)
由于分子分母都趋向于0,所以可以用洛必达法则,上下求导.
得上式=lim x—>-2 (2x-2)/3x^2
=[2*(-2)-2]/3*(-2)^2
=-6/12
=-1/2

1/(x+2) - 12/(x^3 +8)同分
1/(x+2) - 12/(x^3 +8)=(x-4)(2+x)/(x+2)(x^2-2x+4)=(x-4)/(x^2-2x+4)
lim x->-2 (x-4)/(x^2-2x+4)=-1/2

lim x—>-2 (1/(x+2) - 12/(x^3 +8) )
=lim x—>-2 [(x^2-2x+4)-12]/(x^3 +8)
=lim x—>-2 [x^2-2x-8]/(x^3 +8)
=lim x—>-2 [(x+2)(x-4)]/[(x+2)(x^2-2x+4)]
=lim x—>-2 (x-4)/(x^2-2x+4)
=(-2-4)/(4+4+4)
=-1/2