利用根与系数的关系,求一个一元二次方程,使它的根是(x*x)+px+q=0的各根的(1)相反数(2)倒数(3)平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 04:01:04
利用根与系数的关系,求一个一元二次方程,使它的根是(x*x)+px+q=0的各根的(1)相反数(2)倒数(3)平方
xTnP/ͮ~%*xBP@MRP҆V)MJ_+~>0"uc3>w̌A[Iw?;v|KKfrw q;T䦙{־?hX|T#=Ҍ 2#ăeg6ϺP6szfw ٗRO0 s\u~+RW<'Kp?rZkmH@ |yFn3B$B<'I_1vtOtW]oү;9^)N`O=ч_} xPY\\ƽ2.|C*S!D+9g:f!,B;57 UT1mF`:˩nwƌYS]c%a9,99"!Bm^L;A>͇: Ąφ@n5V8IuOVqm\{!Q(9 3W,n9hMg&̆nHeQ%;6h 9lm JE,:uA` f2Zba(2Y!#26y#lK!t%nFhG¥\Ri¶r:-UK&yɯ%7ǹ(

利用根与系数的关系,求一个一元二次方程,使它的根是(x*x)+px+q=0的各根的(1)相反数(2)倒数(3)平方
利用根与系数的关系,求一个一元二次方程,使它的根是(x*x)+px+q=0的各根的(1)相反数(2)倒数(3)平方

利用根与系数的关系,求一个一元二次方程,使它的根是(x*x)+px+q=0的各根的(1)相反数(2)倒数(3)平方

设(x*x)+px+q=0的根为a,b
(1)新方程两根为-a,-b
则新方程为x^2-(-a-b)x+(-a)(-b)=0
x^2+(a+b)x+ab=0
又因为a+b=-p,ab=q
所以所求方程为:x^2-px+q=0
其实这里有一个规律,如果两个一元二次方程一次项系数互为相反数,其他都一样,那么这两个方程的根互为相反数
(2)
新方程两根为1/a,1/b
则新方程为x^2-(1/a+1/b)x+1/a*1/b=0
x^2-[(a+b)/ab]x+1/(ab)=0
又因为a+b=-p,ab=q
所以所求方程为:
x^2+p/q*x+1/q=0
(3)新方程两根为a^2,b^2
则新方程为x^2-(a^2+b^2)x+a^2b^2=0
x^2-[(a+b)^2-2ab]+(ab)^2=0
所求为x^2-(p^-2q)x+q^2=0

(1)(x*x)-px+q=0
(2)(x*x)+px+1=0
(3)平方?有两个根,是指平方和还是和的平方


x1 +x2 = -p
x1*x2 =q
(1)
则-x1+(-x2) = p
(-x1)*(-x2)=q
则所求方程为:
x^2-px+q =0
(2)
1/x1+1/x2=(x1+x2)/x1*x2=-p/q
1/x1*1/x2 = 1/x1*x2=1/q
则所求方程为:
qx^2+px+1=...

全部展开


x1 +x2 = -p
x1*x2 =q
(1)
则-x1+(-x2) = p
(-x1)*(-x2)=q
则所求方程为:
x^2-px+q =0
(2)
1/x1+1/x2=(x1+x2)/x1*x2=-p/q
1/x1*1/x2 = 1/x1*x2=1/q
则所求方程为:
qx^2+px+1=0
(3)
x1^2+x2^2 = (x1+x2)^2 - 2x1*x2 = p^2 - 2q
x1^2*x2^2 = (x1*x2)^2=q^2
则所求方程为:
x^2-( p^2 - 2q)x +q^2 = 0
注:其中^2表示平方

收起

利用一元二次方程的根与系数的关系解答 已知方程2x^2-4x-3=0,利用根与系数的关系,求一个一元二次方程, 一元二次方程根与系数关系题5.利用根与系数关系,求作一个一元二次方程,使它的根分别是2x2-3x+1=0的各根的平方. 一元二次方程 根与系数的关系 一元二次方程根与系数的关系, 一元二次方程根与系数的关系 利用根与系数的关系,求一个一元二次方程,使他的根分别是2^2-3x+1=0的各根的倒数 利用根与系数的关系求一个一元二次方程,使它的根是方程xˇ2-2x-1=0各根的平方 利用根与系数的关系求一个一元二次方程,使它的根式方程X2-2X-1=0各根的平方 已知方程2X平方-3X-2=0,利用根与系数的关系,求做一个一元二次方程,使他的根分别.已知方程2X平方-3X-2=0,利用根与系数的关系,求做一个一元二次方程,使他的根分别是已知方程的2倍. 已知方程2x²-4x-3=0,利用根与系数的关系,求一个一元二次方程,是它的根是原方已知方程2x²-4x-3=0,利用根与系数的关系,求一个一元二次方程,使它的根是原方程各根的平方 一元二次方程的根与系数的关系 过程详细 一元二次方程的根与系数的关系 一元二次方程的根与系数的关系, 一元二次方程的根与系数的关系, 一元二次方程中 根与系数的关系是什么 一元二次方程根与系数的关系 练习题 关于一元二次方程根与系数关系的试题