椭圆x2/4+y2/2=1,过点P(1,1)作弦AB,求AB中点Q的轨迹方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 09:52:03
椭圆x2/4+y2/2=1,过点P(1,1)作弦AB,求AB中点Q的轨迹方程
xTA@+$&a&$HIpЫ!zUVYuY655q1-lw9Sx_MPX{G/e{| )A4#X[֤̚` Հ;%;*\ *jqe-f7v3t4^

椭圆x2/4+y2/2=1,过点P(1,1)作弦AB,求AB中点Q的轨迹方程
椭圆x2/4+y2/2=1,过点P(1,1)作弦AB,求AB中点Q的轨迹方程

椭圆x2/4+y2/2=1,过点P(1,1)作弦AB,求AB中点Q的轨迹方程
设Q(x,y)
A(x1,y1),B(x2,y2)
则 2x=x1+x2,2y=y1+y2
A,B在椭圆x2/4+y2/2=1,即 x²+2y²=4上
所以 x1²+2y1²=4 (1)
x2²+2y2²=4 (2)
(1)-(2) 利用平方差公式
(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0
(y1-y2)/(x1-x2)=-(x1+x2)/2(y1+y2)= -x/2y
(y1-y2)/(x1-x2)表示直线PQ的斜率=(y-1)/(x-1)
所以 (y-1)/(x-1)=-x/2y
所以 (y-1)*2y+x(x-1)=0
即 x²+2y²-x-2y=0

设:Q(x,y),A(x1,y1),B(x2,y2),因A、B在椭圆上,则:
(x1)²/4+(y1)²/2=1
(x2)²/4+(y2)²/2=1
两式相减,得:
(1/4)[(x1+x2)(x1-x2)]+(1/2)[(y1+y2)(y1-y2)]=0
即:[(y1-y2)/(x1-x2)]×[(y1+y2)/(x...

全部展开

设:Q(x,y),A(x1,y1),B(x2,y2),因A、B在椭圆上,则:
(x1)²/4+(y1)²/2=1
(x2)²/4+(y2)²/2=1
两式相减,得:
(1/4)[(x1+x2)(x1-x2)]+(1/2)[(y1+y2)(y1-y2)]=0
即:[(y1-y2)/(x1-x2)]×[(y1+y2)/(x1+x2)]=-1/2
又:(y1-y2)/(x1-x2)为AB斜率,也是QP斜率k=(y-1)/(x-1)
及:【(x1+x2)/2,(y1+y2)/2】为AB中点,即为Q点坐标,代入,得:
[(y-1)/(x-1)]×[y/x]=-1/2
即:2y(y-1)+x(x-1)=0即为点Q的轨迹方程【再化简下即得】

收起