在椭圆x^2/9+y^2/4=1上求一点P,使点P与椭圆两个焦点的连线互相垂直.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:35:40
在椭圆x^2/9+y^2/4=1上求一点P,使点P与椭圆两个焦点的连线互相垂直.
在椭圆x^2/9+y^2/4=1上求一点P,使点P与椭圆两个焦点的连线互相垂直.
在椭圆x^2/9+y^2/4=1上求一点P,使点P与椭圆两个焦点的连线互相垂直.
椭圆的焦点
c^2=a^2-b^2=9-4=5,所以c=√5,a>b,焦点在x轴,
焦点的坐标为:
F1(√5,0),F2(-√5,0)
设p点坐标为:(xp,yp)
直线PF1的斜率为:k1=(yp-0)/(xp-√5)=yp/(xp-√5)
直线PF2的斜率为:k2=(yp-0)/[xp-(√5]=yp/(xp+√5)
点P与椭圆两个焦点的连线互相垂直,即PF1垂直PF2,所以,k1*k2=-1
即:
[yp/(xp-√5)]*[yp/(xp+√5)]=yp^2/(xp^2-5)=-1
所以:yp^2=5-xp^2 (1)
P点在椭圆方上,满足:
xp^2/9+yp^2/4=1 (2)
联立(1),(2)解得:
xp^2=9/5,yp^2=16/5
所以P点坐标为:
(3√5/5,4√5/5),或(3√5/5,-4√5/5),或(-3√5/5,4√5/5),或(-3√5/5,-4√5/5)
设P点的坐标为(x,y) 焦点F的横坐标C^2=a^2-b^2=9-4=5 所以焦点F1和F2的坐标分别为(-根号5,0)、(-根号5,0) P与椭圆两个焦点的连线互相垂直
椭圆的焦点
c^2=a^2-b^2=9-4=5,所以c=√5,a>b,焦点在x轴,
焦点的坐标为:
F1(√5,0),F2(-√5,0)
设p点坐标为:(xp,yp)
直线PF1的斜率为:k1=(yp-0)/(xp-√5)=yp/(xp-√5)
直线PF2的斜率为:k2=(yp-0)/[xp-(√5]=yp/(xp+√5)
点P与椭圆两个焦点...
全部展开
椭圆的焦点
c^2=a^2-b^2=9-4=5,所以c=√5,a>b,焦点在x轴,
焦点的坐标为:
F1(√5,0),F2(-√5,0)
设p点坐标为:(xp,yp)
直线PF1的斜率为:k1=(yp-0)/(xp-√5)=yp/(xp-√5)
直线PF2的斜率为:k2=(yp-0)/[xp-(√5]=yp/(xp+√5)
点P与椭圆两个焦点的连线互相垂直,即PF1垂直PF2,所以,k1*k2=-1
即:
[yp/(xp-√5)]*[yp/(xp+√5)]=yp^2/(xp^2-5)=-1
所以:yp^2=5-xp^2 (1)
P点在椭圆方上,满足:
xp^2/9+yp^2/4=1 (2)
联立(1),(2)解得:
xp^2=9/5,yp^2=16/5
所以P点坐标为:
(3√5/5,4√5/5),或(3√5/5,-4√5/5),或(-3√5/5,4√5/5),或(-3√5/5,-4√5/5)
收起