已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角F1PF2=120°,则求椭圆离心率.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 04:48:55
已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角F1PF2=120°,则求椭圆离心率.
xRMO@1&^PZjd{+p5D/z+XP@"@ I)ۭhyfv޾yf`\gVkJ$jhsd'nD[*[k9VA6˴XMZ}r2DK[|$`^UAʡ֔Ӭx *[C..A4s[V뚳V !D'-Z:Fj`_&`wJ vP%!ql$-ȴI^61r`l0.A.0nF@*@Pe c廩1,bAffzFf/va zhahw"Ww!K/]"s?#08m'&Zq"Ӣ839r h(

已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角F1PF2=120°,则求椭圆离心率.
已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角
F1PF2=120°,则求椭圆离心率.

已知F1F2是椭圆x²/a²+y²/b²=1(a>b>0)的两个焦点,若在椭圆上存在一点P,使角F1PF2=120°,则求椭圆离心率.
若椭圆的上顶点【就是短轴端点】是B,左右焦点分别是F1、F2,则只要使得∠F2BO>=60°就可以了,此时三角形F2BO是一个90°、60°、30°的直角三角形,F2B=a,BO=b,则只要满足a>=2b就能保证∠F2BO>60°.即:a²>=4b²=4a²-4c²,得:4c²>=3a²,e²=c²/a²>=3/4,则e>=√3/2,从而有:√3/2=