如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:44:37
如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的
xV]OP+Ic[&mlwY@*d8@EC"~ +b",Ŗrz}s3(FrםLXkv6j(eEXY=#]ntACB$_-YIF BfzYV͜ut's."rZgMG)z={= )ll "Tf\"nH'QˆŬď L.t } m퀭SIKd_ҭf~囙j*/A dտr+deĠdTҸ]Sݦ6ksSڐJKp Yءʉ8QVzzIhq`v(CY kqNZ <k` GPLgG7<EЄyNy/rGC İ n4 "`O3):JMёG$׿­9M/7jॣXfØ %NBHٟ'qp`l4(C@EQ*&qpt~ZOAB.@vg,q@-<&xkrs91R7ӌb҈=rM(:fpf#c(&;0<|PP,Evr$sA@wLv'Mk$MƘ+_xav>81܍\!:2=9校^4Ìm;Z& ?-c}W*AOJ&%U>j?N$y"0)ľOiChjN=˜3:F F?g*Y 5mǾ/#yk=Y,VȹJ .ˇ$(ƢmB=ima=q]/J5 yV!Ƕ!gI?2K~1:o

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的
如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,
那么就称P为△ABC的自相似点.
⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.
⑵在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹)有图和具体做法加30分;
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数

如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的
【答案】⑴在Rt △ABC中,∠ ACB=90°,CD是AB上的中线,∴ ,∴CD=BD.
  ∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.
  ∴E是△ABC的自相似点.
  ⑵①作图略.(根据画角等的方法,画出两个角就行了)
  作法如下:(i)在∠ABC内,作∠CBD=∠A;
  (ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.
  则P为△ABC的自相似点.
  ②连接PB、PC.∵P为△ABC的内心,∴ ,.
  ∵P为△ABC的自相似点,∴△BCP∽△ABC.
  ∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,
  ∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.
  ∴∠A+2∠A+4∠A=180°.
  ∴ .∴该三角形三个内角的度数分别为720/7 、180/7 、360/7 .

题目不完整啊

不会

你是不是华南的

解⑴在Rt △ABC中,∠ACB=90,CD是AB上的中线,CD=1/2AB∴CD=BD.
∴∠BCE=∠ABC.∵BE⊥CD,
∴∠BEC=90,∴∠BEC=∠ACB.∴△BCE∽△ABC.
∴E是△ABC的自相似点.
⑵①作图略(角平分线)
作法如下:(i)在∠ABC内,作∠CBD=∠A;
(ii)在∠ACB内,作∠BCE=∠ABC;BD交C...

全部展开

解⑴在Rt △ABC中,∠ACB=90,CD是AB上的中线,CD=1/2AB∴CD=BD.
∴∠BCE=∠ABC.∵BE⊥CD,
∴∠BEC=90,∴∠BEC=∠ACB.∴△BCE∽△ABC.
∴E是△ABC的自相似点.
⑵①作图略(角平分线)
作法如下:(i)在∠ABC内,作∠CBD=∠A;
(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.
则P为△ABC的自相似点.
②连接PB、PC.∵P为△ABC的内心,∴角PBC=1/2角ABC,角PCB=1/2角ACB
∵P为△ABC的自相似点,∴△BCP∽△ABC.
∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC =2∠A,
∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180.
∴∠A+2∠A+4∠A=180.∴角A=180/7
∴该三角形三个内角的度数分别为180/7 360/7 720/7

收起