已知函数f(x)=1/2ax^2+2x-lnx 若f(x)在区间[1/3,2]上是增函数,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:36:28
已知函数f(x)=1/2ax^2+2x-lnx 若f(x)在区间[1/3,2]上是增函数,求实数a的取值范围
xTn@YA3]GHflPQ!2!}ڤ* y8w xRH BX!Y<3\A] t I%+a<)Lxλ`:׵szև L35؛B 2=TPs( tj@]Vfs^Ȍ#^Q?Gh$Q7٤DT9ݬ!7oy5E7`& \{ i6K8# o~g,F! rbp._u^ ڮ޶\sW40B:Х>ԕk,V,ktVFk1Sk1ifDrgi ' I]mimp6n Z_:ϡn _3YS`]3W<6T8^0

已知函数f(x)=1/2ax^2+2x-lnx 若f(x)在区间[1/3,2]上是增函数,求实数a的取值范围
已知函数f(x)=1/2ax^2+2x-lnx 若f(x)在区间[1/3,2]上是增函数,求实数a的取值范围

已知函数f(x)=1/2ax^2+2x-lnx 若f(x)在区间[1/3,2]上是增函数,求实数a的取值范围
f(x)=1/2ax^2+2x-lnx 若f(x)在区间[1/3,2]上是增函数
所以f(x)导数大于0在[1/3,2]上恒成立
f(x)导数=ax+2-1/x=(ax^2+2x-1)/x>0
x>0
所以ax^2+2x-1>0在[1/3,2]上恒成立 令g(x)=ax^2+2x-1
a=0时不符合
a0
g(2)>0
解得a>3 又a0时,对称轴为x=-1/a0
a>3
综上:a>3

f'(x)=ax-1/x+2 f(x)在区间[1/3,2]上是增函数
∴f'(x)≥0在[1/3,2]恒成立,
即ax-1/x+2 ≥0在[1/3,2]恒成立
∵x>0 ∴上式化成
ax²+2x-1 ≥0 在[1/3,2]恒成立
显然a≠0 否则式子不成立
当a>0 g(x)=ax²+2x-1 开口向上,∴只要g(1/3)≥...

全部展开

f'(x)=ax-1/x+2 f(x)在区间[1/3,2]上是增函数
∴f'(x)≥0在[1/3,2]恒成立,
即ax-1/x+2 ≥0在[1/3,2]恒成立
∵x>0 ∴上式化成
ax²+2x-1 ≥0 在[1/3,2]恒成立
显然a≠0 否则式子不成立
当a>0 g(x)=ax²+2x-1 开口向上,∴只要g(1/3)≥0 且对称轴x= -1/a≤1/3或g(2)≥0 且对称轴x= -1/a≥2
当a<0 的情况就自己讨论吧,,我不做了

收起