若tan (x+π/4)=2007 1+cos (2x)/cos (2x) + tan 2x 的值答案2008

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:40:20
若tan (x+π/4)=2007 1+cos (2x)/cos (2x) + tan 2x 的值答案2008
x){ѽ$1OAB|vr~Q>RgT|Vӆ=Ny&Hlc/rtThd꛼~\H=@ $Va   Rph;T9 [Cc} aHBh\L`껑̄C'Vu6

若tan (x+π/4)=2007 1+cos (2x)/cos (2x) + tan 2x 的值答案2008
若tan (x+π/4)=2007 1+cos (2x)/cos (2x) + tan 2x 的值
答案2008

若tan (x+π/4)=2007 1+cos (2x)/cos (2x) + tan 2x 的值答案2008
tan(x+pi/4)=tanx+tanpi/4
——————
1-tanx ·tanpi/4
tanx=1003/1004
1-tan2(x)
cos2x=——————
1+tan2(x)
2tanx
tan2x=——————
1-tan2(x)
所求式子={1+((1-tg2(x))/(1+tg2(x))}/[1-tg2(x)]/[1+tg2(x)]+2tgx/(1-tg2(x))
=2/(1-tg2(x))+2tgx/(1-tg2(x))
=2(1+tgx)/(1-tg2(x))
=2/(1-tgx)
=2/1/1004
=2008