已知tan(α+π/4)=-1/7.求(cos2α+1)/【2cos(α-π/4)*sin(α+π/4)-sin2α】的值.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 06:56:29
已知tan(α+π/4)=-1/7.求(cos2α+1)/【2cos(α-π/4)*sin(α+π/4)-sin2α】的值.
xRMK@+ ɰ҂IHH!zR&B,*T^<؛D Gm)ljm ¼cfF׷A#KNx%-dPۡ Cѹ5IcS(i)jXr]:G0

已知tan(α+π/4)=-1/7.求(cos2α+1)/【2cos(α-π/4)*sin(α+π/4)-sin2α】的值.
已知tan(α+π/4)=-1/7.求(cos2α+1)/【2cos(α-π/4)*sin(α+π/4)-sin2α】的值.

已知tan(α+π/4)=-1/7.求(cos2α+1)/【2cos(α-π/4)*sin(α+π/4)-sin2α】的值.
tan(α+π/4)=(tanα+tanπ/4)/(1-tanα*tanπ/4)=(tanα+1)/(1-tanα)=-1/7
解得tanα=-4/3
(cos2α+1)/【2cos(α-π/4)*sin(α+π/4)-sin2α】
=2cos²α/[sin2α+sin(π/2)-sin2α]
=2/(1+tan²α)
=2/[1+(-4/3)²]
=18/25

由已知:tan(α+π/4)=(tanα+1)/(1-tanα)=-1/7,可得tanα=-4/3,所以:
(cos2α+1)/[2cos(α-π/4)*sin(α+π/4)-sin2α]
=2cos^2(α)/{2cos(α-π/4)*sin(α+π/4)-sin[(a-π/4)+(a+π/4)]}
=2cos^2(α)/[cos(α-π/4)*sin(α+π/4)-si...

全部展开

由已知:tan(α+π/4)=(tanα+1)/(1-tanα)=-1/7,可得tanα=-4/3,所以:
(cos2α+1)/[2cos(α-π/4)*sin(α+π/4)-sin2α]
=2cos^2(α)/{2cos(α-π/4)*sin(α+π/4)-sin[(a-π/4)+(a+π/4)]}
=2cos^2(α)/[cos(α-π/4)*sin(α+π/4)-sin(a-π/4)*cos(a+π/4)]
=2cos^2(a)/sin[(a+π/4)-(a-π/4)]
=2cos^2(a)/sinπ/2
=2cos^2(a)
=2/[tan^2(a)+1]
=2/[(-4/3)^2+1]
=18/25

收起