求证1/(sin^2)a+1/(cos^2)a-1/(tan^2)a=2+(tan^2)a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:06:41
求证1/(sin^2)a+1/(cos^2)a-1/(tan^2)a=2+(tan^2)a
x){FC{:34 5AL] $,jk c$铥OΆ|n_bN[Ch >&X]n} Xm!DM)҆(tp\\ NFmd36yv0b|

求证1/(sin^2)a+1/(cos^2)a-1/(tan^2)a=2+(tan^2)a
求证1/(sin^2)a+1/(cos^2)a-1/(tan^2)a=2+(tan^2)a

求证1/(sin^2)a+1/(cos^2)a-1/(tan^2)a=2+(tan^2)a
左边=1/[(sin^2)a(cos^)a]-(cos^2)a/(sin^2)a
=[1-(cos^4)a]/[(sin^2)a(cos^2)a]
=[1+(cos^2)a] [1-(cos^2)a]/[(sin^2)a(cos^2)a]
=[1+(cos^2)a]/(cos^2)a
= [(sin^2)a+(cos^2)a+(cos^2)a]/(cos^2)a
=[(sin^2)a+2(cos^2)a]/(cos^2)a
=(tan^2)a+2=右边