设向量a,b满足|a|=|b|=|a+b|=1则|a-tb|(t∈R)最小值是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 21:05:49
设向量a,b满足|a|=|b|=|a+b|=1则|a-tb|(t∈R)最小值是?
xPn@*UP"ï1Ejx\h֮]Z)EC,KhAl(6/$NH3wf=3w~'/C(|xf6T$E:F:fv+~A@q_|L͖TQu(-ĉF$%55i0<At+ܢD*C2nLZZSKU *W!:2g*lv]yBI̷:G_E<8S܉^77S$n-| ][Hv[ 4~laDin[DyziHT,æ:v|&ub-gn 3~++N^ sźBM_2י&璙`l G\oGGu/a?W

设向量a,b满足|a|=|b|=|a+b|=1则|a-tb|(t∈R)最小值是?
设向量a,b满足|a|=|b|=|a+b|=1则|a-tb|(t∈R)最小值是?

设向量a,b满足|a|=|b|=|a+b|=1则|a-tb|(t∈R)最小值是?
|a+b|²=|a|²+2ab+|b|²=1+2×1×1×cos(a,b)+1=1
∴cos(a,b)=-1/2
∴|a-tb|²=|a|²-2tab+|tb|²=1-2t×1×1×(-1/2)+t²=t²+t+1=(t+1/2)²+3/4≥3/4
∴|a-tb|(t∈R)最小值是√3/2

答案应该是3/4

二分之根号三