如图:在△ABC中,∠B=90°,AB=6CM,BC=8CM,点P从点A开始沿边AB向点B以1CM/S的速度移动,点Q从点B开始沿边BC向点C以2CM/S的速度移动,如果点P、Q分别从点A、B同时出发(1)经过多长时间△PQB的面积等于8平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:39:40
如图:在△ABC中,∠B=90°,AB=6CM,BC=8CM,点P从点A开始沿边AB向点B以1CM/S的速度移动,点Q从点B开始沿边BC向点C以2CM/S的速度移动,如果点P、Q分别从点A、B同时出发(1)经过多长时间△PQB的面积等于8平方
xWNIH#HXBr:RE3^;i 10C[J!i[ |Տ0ڏxh4dt[qΩf;bmcmnV!Y/=7ZA??yB2 *=BG0.U#qV7>eHfK(}Iy07f6:+q{dE)#w!;ckGeiIsN]0rgl2f=cfކº;AEjXQŊykvY5V/Gg5zm#,Gj7ި7$5g7̅5ڶ~Q3JVyuL8zm 'dPVT{W'V)ΎeC*x0%DQasXզ:~3fSVWnOYL>_U|!|P뺒(\e{w͘ɰfPryz񘠩RSe_?, .}X9b@S2jʖJ G@\)K),@s2v7{;ٻBI:vOҒ_d-9c՗KT0Qp}FV+ouX=l+Z %{ĎW 0 #(g[dd/̂ J:''^cΑ(qo0:8B5!hDC[ 1QA|oj8%D 1HmO^1"Xk;:s0͎EXƱs Zcl@@c{_%' dgZEpE3&͝}wTTywȈ=Nte_seg1ݯ/up55RC>0;fffpZ#*߄ \|~tc`V4Cڟp_UCWť&v dQxe1J?ę% 6kY;oG . =w+\Xm #tp3%u.rL3};1.vݺIE8]=k5+o -iF%k5͓"$y53_A*>WV

如图:在△ABC中,∠B=90°,AB=6CM,BC=8CM,点P从点A开始沿边AB向点B以1CM/S的速度移动,点Q从点B开始沿边BC向点C以2CM/S的速度移动,如果点P、Q分别从点A、B同时出发(1)经过多长时间△PQB的面积等于8平方
如图:在△ABC中,∠B=90°,AB=6CM,BC=8CM,点P从点A开始沿边AB向点B以1CM/S的速度移动,点Q从点B开始沿边BC向点C以2CM/S的速度移动,如果点P、Q分别从点A、B同时出发(1)经过多长时间△PQB的面积等于8平方厘米(2)经过多长时间△PQB的面积等于四边形APQC的面积

如图:在△ABC中,∠B=90°,AB=6CM,BC=8CM,点P从点A开始沿边AB向点B以1CM/S的速度移动,点Q从点B开始沿边BC向点C以2CM/S的速度移动,如果点P、Q分别从点A、B同时出发(1)经过多长时间△PQB的面积等于8平方
俊狼猎英团队为您解答

AC=√(AB^2+BC^2)=10,
⑴设经过t秒,则AP=t,BQ=2t,∴CP=10-t,
过P作PR⊥BC于R,则ΔPRC∽ΔABC,
∴PR/AB=PC/AC,∴PR=3(10-t)/5,
∴SΔPQB=1/2BQ*PR=1/2*2t*3(10-t)/5=-0.6t^2+6t,
⑵SΔABQ=1/2BQ*AB=6t,SΔABC=24,
∴S四边形APCQ=SΔABC-SΔABQ=24-6t,
根据题意得:
-0.6t^2+6t=24-6t,
解得 :t=10±2√15,
∵BQ=2t

给张图撒 这样好跟你讲

考点:一元二次方程的应用.
专题:动点型.
分析:(1)设经过x秒,△PBQ的面积等于8cm2.先用含x的代数式分别表示BP和BQ的长度,再代入三角形面积公式,列出方程,即可将时间求出;
(2)设经过y秒,△PBQ的面积等于10cm2.根据三角形的面积公式,列出关于y的一元二次方程,根据△=b2-4ac进行判断.
(1)设经过x秒,△PBQ的面积等于8cm2.

全部展开

考点:一元二次方程的应用.
专题:动点型.
分析:(1)设经过x秒,△PBQ的面积等于8cm2.先用含x的代数式分别表示BP和BQ的长度,再代入三角形面积公式,列出方程,即可将时间求出;
(2)设经过y秒,△PBQ的面积等于10cm2.根据三角形的面积公式,列出关于y的一元二次方程,根据△=b2-4ac进行判断.
(1)设经过x秒,△PBQ的面积等于8cm2.
∵AP=1•x=x,BQ=2x,
∴BP=AB-AP=6-x,
∴S△PBQ=12×BP×BQ=12×(6-x)×2x=8,
∴x2-6x+8=0,
解得:x=2或4,
即经过2秒或4秒,△PBQ的面积等于8cm2;
(2)设经过y秒,△PBQ的面积等于10cm2,
则S△PBQ=12×(6-y)×2y=10,
即y2-6y+10=0,
因为△=b2-4ac=36-4×10=-4<0,
所以△PBQ的面积不会等于10cm2.
点评:本题考查了一元二次方程的应用.关键是用含时间的代数式准确表示BP和BQ的长度,再根据三角形的面积公式列出一元二次方程,进行求解.

收起

考点:一元二次方程的应用.专题:几何动点问题.分析:(1)本题应根据勾股定理列出方程,解出即可;
(2)本题应根据题中的等量关系即△BPQ的面积等于△ABC面积的一半,列出方程解出即可.(1)设x秒后PQ=4
2厘米,则
AP=x,CQ=2x,BP=6-x,BQ=2x
(6-x)2+(2x)2=(42)2
x1=0.4,x2=2;(舍)
∴0.4秒时...

全部展开

考点:一元二次方程的应用.专题:几何动点问题.分析:(1)本题应根据勾股定理列出方程,解出即可;
(2)本题应根据题中的等量关系即△BPQ的面积等于△ABC面积的一半,列出方程解出即可.(1)设x秒后PQ=4
2厘米,则
AP=x,CQ=2x,BP=6-x,BQ=2x
(6-x)2+(2x)2=(42)2
x1=0.4,x2=2;(舍)
∴0.4秒时,P、Q间的距离等于42cm.
(2)设y秒钟后,△BPQ的面积等于△ABC面积的一半
有12(6-y)(2y)=12×3×6×12,
y1=
6-3
22,y2=
6+3
22(舍).
∴6-3
22秒后,△BPQ的面积等于△ABC面积的一半.点评:此题是一道实际结合比较紧密的题目,首先要准确读题找到关键描述语,然后找到等量关系是解决问题的关键.

收起

如图,在△ABC中,∠B=90°,BC=7,AB=24,求AC 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图在△ABC中,AB=AB,∠B=90°BD=CE,M为AC边的中点,求证:△DEM是等腰三角形 已知 如图 在△ABC中,AB=AC,AB=10,∠B=15°,求AB边上的高的长度 如图 在△abc中 ∠c 90°,BC=a,AC=b,AB=c,求证:a²+b²=c² 如图,在RT△ABC中,∠ABC=90°,点D在BC的延长线上,∠D=90°,BD=AB,过点B作BE,求证△ABC全等于△BDE 在Rt△ABC中,AB=4,∠ACB=90°,∠ABC=30°,如图,将 △ABC放在平面直角坐标系中,使点C与坐标原点O重合,在Rt△ABC中,AB=4,∠ACB=90°,∠ABC=30°,如图,将 △ABC放在平面直角坐标系中, 使点C与坐标原点O重合,A,B 已知:如图,在△ABC中,∠B=45°,∠C=30°,AB=根号2,求△ABC的面积. 已知:如图,在△ABC中,∠B=30°,∠C=45°,AB=4cm,求△ABC的面积.【紧急】! 如图,在△ABC中,∠B=45°,∠C=30°,AB=2√2,则△ABC的面积为 如图,在△ABC中,AB=2,AC=3•(√2),∠B=45°,求△ABC的周长与面积. 如图,在△ABC中,AB=AC=6,∠B=75° 求△ABC的面积 如图,在三角形ABC中,∠B=90°,AB=BC,AD是∠A的平分线,求证AB+BD=AC 如图,在△ABC中,AB=AC,∠A=108°,∠B的平分线交AC于点D,求证:DC+AB=BC 如图,在△ABC中,∠A等于75°,∠B等于60°,AB+AC=2+根号6.求AB,AC,BC. 如图,在△abc中,ab=ac=10cm,∠b=15°,cd是ab边上的高,求cd的长. 如图,在△ABC中,AB=AC=10cm,∠B=15°,CD是AB边上的高,求CD的长