已知在直角三角形abc中,角c=90°,tanA+tanB=2 求 tan²A+tan²BRT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 22:15:19
已知在直角三角形abc中,角c=90°,tanA+tanB=2 求 tan²A+tan²BRT
x){}KY|'= $]dZ '%1> ;g]"@<[ gR0  : @ l)0V41J

已知在直角三角形abc中,角c=90°,tanA+tanB=2 求 tan²A+tan²BRT
已知在直角三角形abc中,角c=90°,tanA+tanB=2 求 tan²A+tan²B
RT

已知在直角三角形abc中,角c=90°,tanA+tanB=2 求 tan²A+tan²BRT
∵在Rt△ABC中,∠C=90°
∴ ∠A+∠B=90°
∴tanA·tanB=1
∵tanA+tanB=2,两边同时平方,得
tanA²+2tanA·tanB+tanB²=4
即:tanA²+2+tanB²=4

∴tanA²+tanB²=4-2=2

A+B=90° tanA=cotB
cotB+tanB=2=cosB/sinB+sinBcosB=(cos^2B+sin^2B)/sinBcosB , sin2B=1, cos2B=0
A=45°, B=45°
tan²A+tan²B=2