在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤6在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤60°(2)若B=45°,且A为钝角,求A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:07:09
在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤6在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤60°(2)若B=45°,且A为钝角,求A
xSN@~HHU"oBh3y->qIj#TQ!@'EҤBBIIZ)yW`vڞ%kv盱K}>Jv[} / ? T qyWA]mlVoT7>x?՛яwq Ezz'M>vXݑe1dˢ|T-wf*>'p% QN=GXOQTU!:EZ(pS` \$nP UEm6nI|77!O:lY]-K)3)eߦUn㌈6[X/b;YCi݋zeF +P4EH+"A$5qf(@^ GA`D3D-.͑IB89}3lac

在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤6在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤60°(2)若B=45°,且A为钝角,求A
在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤6
在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.
(1)求证:B≤60°
(2)若B=45°,且A为钝角,求A

在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤6在△ABC中,a²+c²=2b²,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤60°(2)若B=45°,且A为钝角,求A
(1)2b²=a²+c²>=2ac 即b^2>ac
余弦定理 cosB=(a^2+c^2-b^2)/2ac=b^2/2ac>=1/2
y=cosx在(0,90°)内是减函数,所以
B<=60°
(2)B=45°
正弦定理
a/sinA=c/sinC=b/sinB
所以
a²+c²=2b² 变为
sin^2A+sin^2C=2sin^2B=1
sin^2A+sin^2(135°-A)=1
sin^2A+1/2(sinA+cosA)^2=1
sin^2A+1/2(sinA+cosA)^2
=sin^2A+1/2+sinAcosA
=(1-cos2A)/2+1/2+1/2sin2A
=+1/2sin2A-1/2cos2A+1
=1
所以 sin2A=cos2A A为钝角A∈(90°,180°) 2A∈(180°,360°)
所以 2A=225°
S=112.5°