已知a^2+b^2+c^2+49=4a+6b+12c,求(1/a+1/b+1/c)^abc的值如题.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:23:58
已知a^2+b^2+c^2+49=4a+6b+12c,求(1/a+1/b+1/c)^abc的值如题.
xQN@y ç4ao.JjLBofXj!p{pffdh! + CKij0z/bS'eHhPdˣ;_d޿Tl s h0DhIB|5K jBm|T/욽LZ 8+/G,S>W(f,e*lJ-j(Ȇ횋u!<`Aoa6*WNV$>;6qu٦S)/ +{

已知a^2+b^2+c^2+49=4a+6b+12c,求(1/a+1/b+1/c)^abc的值如题.
已知a^2+b^2+c^2+49=4a+6b+12c,求(1/a+1/b+1/c)^abc的值
如题.

已知a^2+b^2+c^2+49=4a+6b+12c,求(1/a+1/b+1/c)^abc的值如题.
a^2+b^2+c^2+49-4a-6b-12c=0
(a^2-4a+4)+(b^2-6b+9)+(c^2-12c+36)=0
(a-2)^2+(b-3)^2+(c-6)^2=0
平方大于等于0,相加等于0
若有一个大于0,则另一个小于0,不成立.
所以两个都等于0
a=2
b=3
c=6
(1/a+1/b+1/c)^abc
=(1/2+1/3+1/6)^36
=1^36
=1

(a-2)^2+(b-3)^2+(c-6)^2=0
a=2
b=3
c=6
(1/a+1/b+1/c)^(abc)
=1^36
=1

a^2+b^2+c^2+49=4a+6b+12c
a^2-4a+4+b^2-6b+9+c^2-12c+36=0
(a-2)^2+(b-3)^2+(c-6)^2=0
a=2 b=3 c=6
1/a+1/b+1/c=1/2+1/3+1/6=1
1^36=1
所以原式=1