已知tanA=2,则sin²A+sinAcosA — 2cos²A等于多少?.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 04:25:11
已知tanA=2,则sin²A+sinAcosA — 2cos²A等于多少?.
xSN@IL Jm ?C $`0j",nia_pv{{ϜQ'8 *x%y*Q5s?$!NDji*5X?M8e3]-@l)c2!!ZWYTro'):֊%Ỷ0,Lost2Gmq9s50 ԅZGY敦2'{He[&}k+f 1 4i@0%SA@|*Q{ I Wk e#_MSXJ5_w3J`m$ E1?

已知tanA=2,则sin²A+sinAcosA — 2cos²A等于多少?.
已知tanA=2,则sin²A+sinAcosA — 2cos²A等于多少?
.

已知tanA=2,则sin²A+sinAcosA — 2cos²A等于多少?.
sin²A+sinAcosA — 2cos²A
=(sin²A+sinAcosA — 2cos²A)/(sin²A+cos²A) (sin²A+cos²A=1)
=(tan²A+tanA-2)/(tan²A+1) (分子分母同时÷cos²A)
=(2²+2-2)/(2²+1)
=4/5

sin²A+sinAcosA -2cos²A
=(sin²A+sinAcosA -2cos²A)/(sin²A+cos²A)
分子分母同时除以cos²A,得
原式=(tan²A+tanA -2)/(tan²A+1)
=(4+2-2)/(4+1)
=4/5

tanA=2, sinA=2cosA, sin²A=4cos²A , 1-cos²A=4cos²A, cos²A=1/5
sin²A+sinAcosA - 2cos²A=1-cos²A+2cos²A-2cos²A=4/5

条件已知tanA=2,所以把问题转化为可利用的已知条件就行了,用三角函数中的平方关系!
sin²A+sinAcosA — 2cos²A
=(sin²A+sinAcosA — 2cos²A)÷(sin²A+cos²A)
=(tan²A+tanA-2)÷(tan²A+1)
=(2²+2-2)÷(2²+1)
=0.8