证明 SIN²A+SIN²B-SIN²C=2SINASINBCOSC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:20:31
xRJ@4M0T2r.BҕZT*"Gt-HO+2v/8jAopsιF/eS֮Cnwo}mc+m$CS!$H?&9['j)!vԦ7tu>IHߣδ;j-;ަWtRuY'^ޟv;^Ö#W &" a@ @Z6`;t߁\daS9DYݒR2$-~
y-VbYI?HYA!!"f
R'كVԈ]m̷<(<&wpucև<Ԩ3*Z.Ōx?v6
|
证明 SIN²A+SIN²B-SIN²C=2SINASINBCOSC
证明 SIN²A+SIN²B-SIN²C=2SINASINBCOSC
证明 SIN²A+SIN²B-SIN²C=2SINASINBCOSC
A, B, C是三角形的内角吗?
= = = = = = = = =
证明:设ΔABC的外接圆半径为R.
由正弦定理,
a /sin A =b /sin B =c /sin C =2R,
所以 a =2R sin A,
b =2R sin B,
c =2R sin C.
由余弦定理,
cos C =(a^2 +b^2 -c^2) /(2ab)
=[ (4R^2) (sin A)^2 +(4R^2) (sin B)^2 -(4R^2) (sin C)^2 ] / (8R^2 sin A sin B)
=[ (sin A)^2 +(sin B)^2 -(sin C)^2 ] / (2 sin A sin B).
所以 (sin A)^2 +(sin B)^2 -(sin C)^2 =2 sin A sin B cos C.
= = = = = = = = =
下次提问时,选好分类.