已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:01:24
已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
xQN0nJc" Jģ P(P¥gNz/I8hfY!w1sW=_a&8}QU_gev[=y.*G,ိo8v ^HȂP+F9H% m˟G,pp\帘ugWR;4oU -2_s}"5qv|͚&ـh%\FzTP(& *n !?d{v

已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)

已知a,b,c都是正实数,求证:1/2a+1/2b+1/2c>=1/(b+c)+1/(c+a)+1/(a+b)
证明:首先有1/a+1/b>=4/(a+b)(这个两边同分也可以简单得到证明)
故1/a+1/b>=4/(a+b)
1/a+1/c>=4/(a+c)
1/c+1/b>=4/(c+b)
=>2/a+2/b+2/c>=4/(a+b)+4/(b+c)+4/(a+c)
=>1/(2a)+1/(2b)+1/(2c)>1/(a+b)+1/(a+c)+1/(b+c)
当且仅当a=b=c等号成立
证毕!